
Sendmail X:

Requirements,

Architecture,

Functional Specification,

Implementation,

and Performance

Claus Assmann

c©Sendmail, Inc.
All rights reserved

May 4, 2005

2 Sendmail X, May 4, 2005, 11:44

Contents

1 Sendmail X: Requirements 19

1.1 Requirements . 19

1.1.1 Basic Requirements . 19

1.1.2 Other Requirements . 20

1.1.3 Explanation of Buzzwords . 20

1.1.3.1 Robustness . 21

1.1.3.2 Flexibility . 21

1.1.3.3 Scalability . 21

1.1.3.4 Extendability . 21

1.1.3.5 Maintainability . 21

1.1.3.6 Portability . 22

1.2 Restrictions . 22

1.3 Configuration . 22

1.3.1 Configuration File . 22

1.3.2 Configuration Options . 23

1.4 Documentation . 23

1.4.1 Documentation Format . 24

2 Sendmail X: Architecture 25

2.1 General Architecture of sendmail X . 25

2.1.1 Overview . 25

2.1.2 Remarks about Performance . 26

2.1.3 Remarks about Configuration . 27

2.1.3.1 Simplicity and Flexibility . 27

2.1.3.2 Option Grouping . 27

3

4 Sendmail X, May 4, 2005, 11:44

2.1.3.3 Accessing and Changing the Configuration 28

2.1.4 Security Considerations . 28

2.1.5 Control and Data Flow . 28

2.2 Configuration . 29

2.2.1 General . 29

2.2.2 Syntax . 30

2.2.2.1 Comments . 31

2.2.2.2 Internationalization . 32

2.2.2.3 Strings and other Types . 32

2.2.2.4 Inclusion . 32

2.2.3 Alternative Configuration Formats . 32

2.2.4 Configurability . 33

2.2.4.1 Consistency . 36

2.2.5 Configuration File Structure . 36

2.2.6 Option Names . 38

2.2.7 Dynamic Configuration . 38

2.2.7.1 Configuration: Conditionals . 39

2.2.7.2 Configuration: Reference to Maps . 39

2.2.8 Default Configuration . 40

2.2.9 Displaying Current Configuration . 40

2.2.10 Dynamically Changing Configuration . 40

2.2.11 Configuration Example for PreAlpha Version . 41

2.2.11.1 Anti-Spam Configuration for PreAlpha Version 43

2.2.12 Security Considerations . 43

2.3 Supervisor . 44

2.3.1 Security Considerations . 44

2.4 Queue Manager . 44

2.4.1 Queues . 45

2.4.1.1 Current Selection of Queues and their Names 47

2.4.2 Queue Formats . 47

2.4.2.1 Reference Counting . 47

2.4.3 Data Flow: Moving Envelopes between Queues . 48

2.4.3.1 Terminology . 48

Sendmail X, May 4, 2005, 11:44 5

2.4.3.2 Data Flow: Queue oriented View . 49

2.4.3.3 Detailled Data Flow: Transaction/Recipient oriented View 50

2.4.3.4 Updating Data in Queues after a Delivery Attempt 51

2.4.3.5 Reading Entries from Deferred Queue . 52

2.4.3.6 Cut-Through Delivery . 53

2.4.4 Scheduling . 54

2.4.4.1 Two Level Scheduling . 56

2.4.4.2 First Level Scheduling (Global) . 58

2.4.4.3 Second Level Scheduling (Micro) . 58

2.4.4.4 Minimizing Number of Transactions . 59

2.4.4.5 Cleanup of Active Queue . 59

2.4.4.6 Outgoing Connection Cache . 59

2.4.4.7 Multiple Destinations . 59

2.4.4.8 Data Structures to support Scheduling 60

2.4.5 Triggering Deliveries . 61

2.4.6 DSNs . 61

2.4.6.1 DSN Recipient Types . 62

2.4.6.2 DSN: Return Body or Headers . 63

2.4.6.3 DSN: Delayed . 63

2.4.7 Load Control . 63

2.4.8 Misc . 65

2.4.9 Security Considerations . 65

2.5 SMTP Server Daemon . 66

2.5.1 Internet Server Application . 66

2.5.2 SMTP Server Design Alternatives . 67

2.5.3 Control Flow . 69

2.5.4 Anti-Spam Checks . 70

2.5.5 Valid User Checks . 71

2.5.6 Address Rewriting . 71

2.5.6.1 Envelope Address Rewriting . 71

2.5.6.2 Header Address Rewriting . 71

2.5.7 Security Considerations . 71

2.6 Address Resolver . 72

6 Sendmail X, May 4, 2005, 11:44

2.6.1 Address Resolver Operation . 72

2.6.2 Generic Comment about Map Lookups . 72

2.6.3 Mail Routing . 73

2.6.4 Address Rewriting . 73

2.6.5 Proposal for Routing and Rewriting . 73

2.6.6 Valid Recipients . 74

2.6.6.1 Valid Local Recipients . 74

2.6.6.2 Valid Remote Recipients . 74

2.6.7 Aliases . 75

2.6.7.1 Forward . 76

2.6.7.2 Other Approaches to Aliasing? . 76

2.6.8 Expansion to Multiple Addresses . 77

2.6.9 Virtual Hosting . 77

2.6.10 Fallback . 77

2.6.11 Security Considerations . 77

2.7 Initial Mail Submission . 77

2.7.1 Initial Mail Submission Alternatives . 78

2.7.1.1 How to use queue directory? . 78

2.7.1.2 Misc . 79

2.7.2 Security Considerations . 79

2.8 Mail Delivery Agents . 79

2.8.1 Delivery Agent Modules . 79

2.8.2 Specifying Delivery Agents . 80

2.8.3 Local Delivery Agent . 80

2.8.4 Security Considerations . 81

2.9 SMTP Client . 81

2.9.1 Control Flow . 82

2.9.2 Security Considerations . 82

2.10 Milter . 83

2.10.1 Possible Enhancements . 83

2.10.2 More Ideas for Enhancements . 83

2.10.3 Security Considerations . 83

2.11 Miscellaneous Programs . 84

Sendmail X, May 4, 2005, 11:44 7

2.11.1 Access to the Queue Manager . 84

2.11.1.1 Show Mail Queue . 84

2.11.1.2 Force Queue Run . 84

2.11.1.3 Mailstats . 84

2.11.1.4 Performance Statistics . 84

2.11.2 Security Considerations . 84

2.12 Maps . 84

2.13 Modules . 86

2.13.1 Security Considerations . 86

2.14 Security Hints . 86

2.14.1 Privileged Access . 87

2.14.1.1 Access to Files . 88

2.14.1.2 Sockets . 88

2.14.1.3 Running as a different user . 88

2.15 Misc . 89

2.15.1 Misc Misc . 89

2.15.2 Configuration . 89

2.15.3 Configuration Changes . 89

2.15.4 Performance Measurements: Profiling . 90

2.15.5 Logging . 90

2.15.5.1 Logging Granularity . 90

2.15.5.2 Parsing Logfiles . 91

2.15.5.3 Extensible Logging . 92

2.15.6 Debugging . 92

2.15.7 Robust Programming . 92

2.16 Schedule . 92

2.17 Glossary . 93

3 Sendmail X: Functional Specification 95

3.1 Functional Specification of sendmail X . 95

3.1.1 Asynchronous APIs . 95

3.1.1.1 Generic Description of Asynchronous Operation 96

3.1.1.2 Some Remarks about Identifiers . 96

3.2 Configuration . 97

8 Sendmail X, May 4, 2005, 11:44

3.2.1 Configuration Structure . 97

3.2.2 Naming Conventions . 97

3.2.3 Specification of Classes (Lists, Sets) . 98

3.3 Supervisor . 98

3.3.1 External Interfaces . 98

3.3.2 Operation . 99

3.3.3 Shutdown . 99

3.3.4 Configuration . 100

3.3.5 Internal Interfaces . 102

3.4 Queue Manager . 102

3.4.1 External Interfaces . 103

3.4.2 Shutdown . 103

3.4.3 Internal Interfaces . 103

3.4.4 Indices for Accessing the EDBs . 103

3.4.5 Interface to SMTP DAs . 104

3.4.5.1 QMGR - Delivery Agents API . 104

3.4.6 Transferring Data between EDBs . 106

3.4.6.1 Detailled Data Flow for Cut-Through Delivery 107

3.4.6.2 Reading Entries from Deferred Queue . 107

3.4.7 Reconstructing Data from IBDB . 108

3.4.7.1 Cleaning up IBDB . 109

3.4.8 Deferred Envelope Database: Recipient Addresses 109

3.4.9 Scheduler Algorithms . 110

3.4.9.1 Slow Start and Connection Limit . 110

3.4.10 Data Structures . 111

3.4.10.1 Connection Cache Access . 111

3.4.10.2 Connection Reuse Problem . 111

3.4.10.3 Data for DSN . 112

3.4.10.4 Incoming Queue (INCEDB) . 112

3.4.10.5 Active Queue (ACTEDB, AQ) . 114

3.4.10.6 Deferred Queue (DEFEDB) . 117

3.4.10.7 Deferred Queue Cache (EDBC) . 119

3.4.10.8 Connection Cache (incoming) . 119

Sendmail X, May 4, 2005, 11:44 9

3.4.10.9 Connection Status (incoming) . 119

3.4.10.10 Connection Cache (outgoing) Connections 119

3.4.10.11 Connection Status (outgoing) . 121

3.4.10.12 DA Status Cache . 121

3.4.10.13 Load Control Data Structures . 122

3.4.11 Database and Cache APIs . 123

3.4.12 QMGR - SMTPS API . 123

3.4.13 QMGR - First Level Scheduler API . 124

3.4.14 QMGR - Delivery Scheduler API . 124

3.4.15 Interface to AR . 125

3.4.15.1 Aliases . 125

3.4.16 Updating Data in Queues after a Delivery Attempt 126

3.4.16.1 Preserving Order of Updates . 127

3.4.17 Load Control Functionality . 128

3.4.17.1 Load Control Functionality: Throttling 129

3.4.17.2 Load Control Functionality: Unthrottling 130

3.4.17.3 Handling out of Memory . 130

3.4.18 Manual Interaction with QMGR . 130

3.4.18.1 Getting Status Informations . 131

3.4.18.2 Triggering Actions . 131

3.5 SMTP Server Daemon . 131

3.5.1 External Interfaces . 131

3.5.2 Control Flow . 131

3.5.2.1 Startup . 132

3.5.2.2 States . 132

3.5.2.3 Data Structures . 133

3.5.2.4 Detailled Control Flow . 134

3.5.2.5 Pipelining . 136

3.5.2.6 Anti-Spam Checks . 137

3.5.2.7 Anti-Spam Checks: Functionality . 142

3.5.2.8 Anti-Spam Checks: Functionality for first Release 142

3.5.2.9 Anti-Spam Checks: API . 144

3.5.2.10 Valid Recipient Checks . 145

10 Sendmail X, May 4, 2005, 11:44

3.5.2.11 Valid Sender Checks . 145

3.5.2.12 Map Lookups . 146

3.5.3 Policy Milter Interface Behavior . 146

3.5.3.1 Interaction between Anti-Spam Checks and Milter 147

3.5.4 More Generic Return and Reply Code Behavior . 147

3.5.5 Internal Interfaces . 148

3.5.5.1 Throttling . 148

3.5.5.2 Removal of Entries from CDB . 148

3.6 Address Resolver . 149

3.6.1 External Interfaces . 149

3.6.2 Valid Recipients . 149

3.6.2.1 Valid Local Recipients . 149

3.6.3 Internal Interfaces . 150

3.6.3.1 Data Structures . 150

3.6.3.2 Error Behavior . 151

3.6.3.3 Caching of Map Lookups . 151

3.6.3.4 Threading Model . 151

3.7 Initial Mail Submission . 152

3.7.1 External Interfaces . 152

3.7.2 Internal Interfaces . 152

3.8 Mail Delivery Agents . 152

3.8.1 External Interfaces . 152

3.8.2 Configuration . 152

3.8.3 Configuring Multiple DAs . 155

3.8.3.1 Selecting and Naming Delivery Agents . 155

3.8.4 Internal Interfaces . 157

3.8.4.1 Status Information from DA to QMGR 157

3.9 SMTP Client . 158

3.9.1 External Interfaces . 158

3.9.2 Internal Interfaces . 158

3.9.2.1 Status Information from SMTP Client to QMGR 158

3.10 Milter . 159

3.10.1 External Interfaces . 159

Sendmail X, May 4, 2005, 11:44 11

3.10.2 Internal Interfaces . 159

3.11 Miscellaneous Programs . 159

3.11.1 Show Mail Queue . 159

3.11.2 Force Queue Run . 160

3.11.3 Mailstats . 160

3.12 Security Hints . 160

3.12.1 Owners and Permissions . 160

3.13 Databases and Caches for Envelopes, Contents, and Connections 161

3.13.1 DBs with Multiple Access Keys . 161

3.13.2 DBs with Non-unique Access Keys . 161

3.13.3 Envelope Database Access Methods . 162

3.13.4 Incoming Envelope Database API . 162

3.13.4.1 Incoming Envelope Database API: RSC 163

3.13.4.2 Incoming Envelope Database: Misc . 164

3.13.4.3 Incoming Envelope Database API: Disk Backup 165

3.13.5 Active Envelope Database API . 166

3.13.6 Deferred Envelope Database API . 167

3.13.6.1 Deferred Envelope Database Implementation 169

3.13.7 Content Database . 171

3.13.7.1 Content Database API . 172

3.13.7.2 CDB: Group Commits . 173

3.13.7.3 Logging as CDB Implementation . 173

3.13.7.4 CDB: Meta Data Operations . 174

3.13.7.5 CDB: File Reuse . 174

3.13.8 Connection Database (Cache) . 175

3.13.9 Available Database Implementation . 175

3.13.10Restricted Size Caches . 175

3.13.10.1 Restricted Size Caches With Varying Size 176

3.13.11Atomic Updates . 176

3.13.11.1 Atomic Disk Writes . 177

3.13.12Data Structures for Queues on Disk and for Communication 177

3.13.12.1 Size Estimates . 178

3.13.13Misc . 179

12 Sendmail X, May 4, 2005, 11:44

3.14 Maps . 179

3.14.1 Results of Map Lookups . 179

3.14.2 Lookup Functionality . 179

3.14.2.1 Placing the ’@’ sign . 180

3.14.3 Replacing Patterns in RHS . 181

3.15 Error Handling . 181

3.15.1 Returning Errors . 181

3.15.2 Error Classification . 181

3.15.3 Converting Error Codes into Textual Descriptions 182

3.15.4 Misc . 182

3.16 Libraries . 182

3.16.1 Naming Conventions . 183

3.16.1.1 Naming Conventions for Types . 183

3.16.1.2 Naming Conventions for Functions . 183

3.16.1.3 Naming Conventions for Variables . 183

3.16.1.4 Naming Conventions for Structures . 184

3.16.1.5 Naming Conventions for Macros . 184

3.16.2 Include Files . 184

3.16.3 I/O . 185

3.16.3.1 Required I/O Functionality . 185

3.16.3.2 I/O Buffer . 185

3.16.4 Event Driven Loop . 186

3.16.5 Resource Pools . 187

3.16.6 Memory Handling . 187

3.16.7 String Abstraction . 187

3.16.7.1 Constant Strings . 188

3.16.8 Timed Events . 189

3.16.9 Shared Memory . 189

3.16.10Address Parsing . 189

3.16.10.1 RFC 2821 parsing . 190

3.16.10.2 RFC 2822 parsing . 191

3.16.10.3 Token handling . 192

3.16.10.4 Address rewrite engine . 192

Sendmail X, May 4, 2005, 11:44 13

3.16.11 Internal Communication . 192

3.16.11.1 Data Structures for Internal Communication 192

3.16.11.2 Marking End of Record . 195

3.16.11.3 A Note about Record Types . 195

3.16.12Common API for Storage Libraries (Maps) . 196

3.16.12.1 Data Structure for Storage Libraries . 198

3.16.12.2 Abstraction Layer for Storage Libraries 199

3.16.12.3 Dynamic (Re)Open of Maps . 204

3.16.12.4 Asynchronous Operation of Maps . 204

3.16.12.5 Multi-Threading . 204

3.16.12.6 Multiple Map Instances . 205

3.16.13DNS . 205

3.16.14Timeouts . 206

3.16.15Misc . 207

3.16.16Logging . 208

3.16.16.1 ISC Logging . 208

3.17 Modules . 209

3.18 Building sendmail X . 210

3.18.1 autotools . 210

3.19 Operating System Calls . 210

3.19.1 General Hints . 210

3.19.2 Operating System Specific Hints . 211

3.20 Worker Threads . 211

3.20.1 SMTP Server and Worker Threads . 212

3.20.2 Worker Thread Library . 212

3.20.3 Thread Libraries . 213

3.20.3.1 State Threads for Internet Applications 213

3.20.4 Dealing with Blocking Sections for Worker Threads 213

3.20.4.1 Worker Threads with Semaphores . 214

3.20.4.2 Worker Threads with Dynamic Limits . 214

3.20.4.3 Counting Active Threads . 214

3.20.4.4 Summary: Dealing with Blocking Sections for Worker Threads 215

3.20.5 Event Thread Library . 215

14 Sendmail X, May 4, 2005, 11:44

3.20.5.1 Overview . 215

4 Sendmail X: Implementation 219

4.1 Introduction to the Sendmail X Source Code . 219

4.1.1 Identifiers . 219

4.1.2 Asynchronous Functions . 220

4.1.2.1 Two Different Problems . 220

4.1.2.2 Two Approaches . 220

4.1.2.3 Asynchronous Functions: Callback Synchronization 222

4.1.2.4 Asynchronous Functions: Result Queue 224

4.1.3 Transaction Based Processing . 225

4.1.4 Secure Programming . 226

4.2 Schedule . 226

4.3 Libraries . 227

4.3.1 Queues, Lists, etc . 228

4.3.2 Hash Tables . 228

4.3.3 Classes . 228

4.3.4 Trees . 228

4.3.5 RSC . 228

4.3.5.1 Typed RSC . 229

4.3.6 DBs with Multiple Access Keys . 230

4.3.7 DBs with Non-unique Access Keys . 230

4.3.8 Event Thread Library . 230

4.3.9 RCB Communication . 232

4.3.10 DNS . 233

4.3.10.1 DNS Data Structures . 233

4.3.10.2 DNS Functions . 235

4.3.11 Logging . 236

4.3.11.1 Logfile Rotation . 236

4.4 SMTP Server Daemon . 237

4.4.1 First Prototype . 237

4.4.1.1 Misc . 237

4.4.2 Communication between SMTPS and QMGR . 237

4.4.2.1 Implementation of Communication between SMTPS and QMGR 238

Sendmail X, May 4, 2005, 11:44 15

4.4.2.2 SMTPS - QMGR Protocol . 238

4.4.2.3 SMTPS - SMAR Protocol . 239

4.5 Mail Delivery Agents . 240

4.5.1 Maintaining Delivery Classes and Agents . 240

4.6 SMTP Client . 241

4.6.1 First Prototype . 241

4.6.1.1 SMTPC - QMGR Protocol . 241

4.6.2 SMTP Client Implementation . 242

4.6.2.1 SMTP Client Data Structures . 242

4.6.2.2 SMTP Client Functions . 244

4.7 Queue Manager . 245

4.7.1 Queue Manager Implementation . 246

4.7.2 Locking . 246

4.7.2.1 Deadlock Avoidance . 247

4.7.3 Data Structures . 247

4.7.4 Data Flow . 251

4.7.5 Functions . 252

4.7.5.1 Initialization Functions . 252

4.7.5.2 Communication Functions . 252

4.7.5.3 Commit Task . 253

4.7.5.4 Scheduler . 253

4.7.5.5 QMGR to SMTPC Protocol . 254

4.7.5.6 Load Control Implementation . 254

4.7.5.7 Updating Recipient Status . 256

4.7.5.8 Handling Bounces . 260

4.7.5.9 DSN: Delayed . 261

4.7.5.10 AR to QMGR . 262

4.8 Address Resolver Implementation . 262

4.8.1 Resolving Recipient Addresses . 263

4.8.2 Alias Expansion . 264

4.8.3 Aliases: Owner- Handling . 264

4.9 Milter . 266

4.9.1 Sendmail 8 Milter Protocol . 266

16 Sendmail X, May 4, 2005, 11:44

4.9.1.1 Macros . 268

4.9.1.2 Option Negotiation . 268

4.9.2 SMTPS - Milter Protocol . 268

4.9.2.1 Option Negotiation . 270

4.9.2.2 Differences to Milter . 270

4.10 Implementation of Databases and Caches for Envelopes, Contents, and Connections . . . 271

4.10.1 Incoming Envelope Database . 271

4.10.2 Incoming Envelope Database Disk Backup . 271

4.10.3 Active Envelope Database . 271

4.10.4 Deferred Envelope Database Implementation . 275

4.11 Misc . 277

4.11.1 IBDB Cleanup . 278

4.11.2 Show Mail Queue . 278

4.12 Testing . 278

4.13 Problems encountered in the Implementation . 279

4.13.1 Implementation Problems . 279

4.13.1.1 Out of Memory . 279

4.13.1.2 Transaction Based Processing . 279

4.13.2 Behavior of the Implementation . 280

4.13.2.1 Number of Open Outgoing Connections 280

5 Sendmail X: Performance Tests and Results 281

5.1 SMTP Server Daemon . 281

5.1.1 SMTP Sink . 281

5.1.1.1 SMTP Sink with CDB . 282

5.1.2 SMTP Relaying Using a Sendmail X Prototype . 284

5.1.2.1 Various Linux FS . 285

5.1.2.2 Various FreeBSD Results . 287

5.1.2.3 Various SunOS 5 Results . 292

5.1.2.4 Various OpenBSD Results . 292

5.1.2.5 Various AIX Results . 293

5.2 Implementation of Queues and Caches . 293

5.2.1 Filesystem Performance . 293

5.2.1.1 Test Systems . 293

Sendmail X, May 4, 2005, 11:44 17

5.2.1.2 Meta Data Operations . 296

5.2.1.3 Writing a Logfile . 298

5.2.2 Harddisk Performance . 308

5.2.3 Performance of Berkeley DB . 310

5.3 Miscellaneous about Performance . 315

5.4 Performance of Various Programs . 316

5.4.1 TCP/IP Performance . 316

5.4.2 DB Lookup Performance . 317

5.4.3 snprintf Performance . 317

18 Sendmail X, May 4, 2005, 11:44

Chapter 1

Sendmail X: Requirements

This chapter describes the basic requirements which sendmail X.0 must fulfill as well as the basic func-
tionality that it must implement. It will state several obvious items just for the sake of completeness.
This chapter will serve as a basis from which the author will work to design sendmail X.0. The content
must be agreed upon by all relevant, involved parties. It will also lay the groundwork for the future
development of the sendmail X series of MTAs, of which sendmail X.0 will be the first implementation.
sendmail X.0 is not meant to be feature complete but a proof of concept. It must be designed and written
with extensibility in mind. Subsequent versions of sendmail X will add more features.

Note: some sections of this document are still under development.

1.1 Requirements

1.1.1 Basic Requirements

Some requirements for an MTA are so basic that it should not be necessary to mention them. However,
we will do it nevertheless. These requirements are:

• Security: it must not be possible to abuse the MTA to compromise the security of the host on
which the MTA is running.

• Reliability: the MTA MUST NOT lose the message for frivolous reasons1.

These requirements are conditio sina qua non, they will be taken for granted throughout this and related
documents and during the design and implementation of sendmail X. In addition to these, sendmail
X must be efficient. However, neither of the two main requirements will be compromised to increase
efficiency. The intended goal for the efficiency of sendmail X is to be about one order of magnitude faster
than sendmail 8.

There is another obvious requirement which is given here for completeness, i.e., conformance to all
relevant RFCs, esp. RFC 2821 [Kle01], and implementation of (nearly) all RFCs that sendmail 8 handles:

1RFC 2821, 6.1 [Kle01]

19

20 Sendmail X, May 4, 2005, 11:44

RFC 974 Mail Routing and the Domain System [Par86]
RFC 1123 Internet Host Requirements [Bra89]
RFC 1652 SMTP 8BITMIME Extension [KFR+94]
RFC 1869 SMTP Service Extensions [KFR+95]
RFC 1870 SMTP SIZE Extension [KFM95]
RFC 1891 SMTP Delivery Status Notifications [Moo96b]
RFC 1892 The Multipart/Report Content Type for the Reporting of

Mail System Administrative Messages [Vau96b]
RFC 1893 Enhanced Mail System Status Codes [Vau96a]
RFC 1894 Delivery Status Notifications [Moo96a]
RFC 1985 SMTP Service Extension for Remote Message Queue Starting [Win96]
RFC 2033 Local Mail Transfer Protocol [Mye96]
RFC 2034 SMTP Service Extension for Returning Enhanced Error Codes [Fre96]
RFC 2045 Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies [FB96]
RFC 2476 Message Submission [GK98]
RFC 2487 SMTP Service Extension for Secure SMTP over TLS [Hof99]
RFC 2554 SMTP Service Extension for Authentication [Mye99]
RFC 2822 Internet Message Format [Res01]
RFC 2852 Deliver By SMTP Service Extension [New00]
RFC 2920 SMTP Service Extension for Command Pipelining [Fre00]

1.1.2 Other Requirements

sendmail X must be compliant with all the usual buzzwords (marketing or software development): robust,
flexible, scalable, extendable, maintainable, portable to modern OS with support for POSIX (or similar)
threads and certain other basic requirements. What this really means in particular will be explained in
the next sections. sendmail X must run well on Unix and Windows (natively), support for Windows will
not be added later on as an afterthought. It must provide hooks for monitoring, managing, etc. It also
must be simple to replace certain modules (library functions) by specialized functions, e.g., as in sendmail
8.12 different lookup schemes for mailboxes.

sendmail X should be backward compatible with sendmail 8 at the user level as far as the basic require-
ments (esp. security) allow this. This includes support for aliases and .forward files, however the actual
implementation may differ and result in slightly different behavior.

sendmail X should minimize the burden it puts on other systems, i.e., it must not overwhelm other MTAs,
and it should make efficient use of network resources. It must properly deal with resource shortages on
the local system and degrade gracefully in such events. However, the first implementation(s) of sendmail
X may require some large amounts of certain resources, esp. memory.

sendmail X is meant to be useful to a majority of users, and thus must deal with some of the quirks
of other MTAs and MUAs. However, it will most likely not go to the extreme of sendmail 8. Even
though it should be “liberal in what it accepts”, there are limits. Those limits are given by the time
required to implement workarounds for broken systems, the possible problems for security (which will
not be compromised), performance (which will only be compromised if really necessary), the amount of
architectural changes, etc.

1.1.3 Explanation of Buzzwords

In this section we explain what the various buzzwords mean with respect to sendmail X.

Sendmail X, May 4, 2005, 11:44 21

1.1.3.1 Robustness

sendmail X must be robust which means that even in event of failures it should behave reasonably. It must
never lose e-mails except in the case of hardware failures or software failures beyond sendmail’s control
that occur after sendmail has accepted responsibility for an e-mail (there’s nothing sendmail can do if
someone/something destroys the files/disks containing the e-mails). In the event of resource shortages
(memory, disk, etc) it must degrade gracefully. It should be implemented in such a way that it can also
deal with simple OS errors, e.g., if a (sub)process fails due to an error (e.g., looping because a system
calls fails in unexpected ways), it should deal with that in a useful way, i.e., log an error message and
exit without causing havoc to the rest of the system. It is not expected to deal with all possible errors
(e.g., who supervises the supervisor?) but the design should be done properly to deal with most (also
unexpected) problems.

sendmail X also must be able to deal with Denial of Service attacks as much as technically possible.

1.1.3.2 Flexibility

It must be possible to tune or replace components of the sendmail X system for different purposes to
achieve good performance in almost all cases or to add new features.

1.1.3.3 Scalability

sendmail X should be able to take advantage of changes in the underlying OS and hardware that modify
the relative performance of the available components. For example, if more processing power (faster or
more CPUs) is available then the overall system should become faster. However, this can’t be taken
to an extreme since other parts might become bottlenecks despite careful design. For example, it is
unreasonable to expect twice as many local mail deliveries if the number of CPUs is doubled since the
limiting factor is most likely disk I/O in this scenario.

Clustering/High Availability support might be required too. The impact, as far as an application designer
is concerned, is:

• the need to leave a consistent data set on disk after a crash;

• the need to start up quickly with a post-crash data set;

• the ability to play nicely with some kind of front-end load-balancer.

1.1.3.4 Extendability

It must be possible to extend sendmail X in various places. These include: interfaces to other mailbox
identification schemes, interfaces to other map types, adding other delivery agents. sendmail X will have
clear APIs for various extensions, as for example the milter API is one for sendmail 8.

1.1.3.5 Maintainability

sendmail X must be designed and implemented to be easily maintainable. This not just means adherence
to the Sendmail coding standard, but also a clear design without “surprises”, e.g., far reaching side effects.

22 Sendmail X, May 4, 2005, 11:44

1.1.3.5.1 Testing It is important that (almost) each functionality in sendmail X is subject to auto-
matic testing. Having tests greatly simplifies maintainability because changes to the implementation can
be automatically tested, i.e., if some of the tests break then the changes are most likely incorrect (unless
the tests are broken themselves). Tests should cover (almost) all of the code (paths).

1.1.3.6 Portability

sendmail X must run on Unix OSs which support (POSIX) threads and on Windows. The exact list of
requirements for the OS is not yet finalized. sendmail X will be written in C, most likely C89-compliant.

1.2 Restrictions

There are several things that sendmail X will not do or offer. First of all, it will not use the same (or
even compatible) configuration files as sendmail 8 does. There should be a tool to migrate sendmail 8
mc files to sendmail X configuration files. However, it is unlikely that cf files can be easily migrated to
sendmail X configuration files.

sendmail X.0 will not not have support for:

• MIME conversion (7/8 bit); it will just send 8 bit data (or maybe reject delivery based on some
configuration option).

• UUCP support (other than external delivery agent). Support for other nets: bitnet, fido, DECNet,
... i.e., address parsing/syntax is RFC (2)821/(2)822.

• Special support for dialup systems.

• Localization.

Those features may be added in future versions.

1.3 Configuration

This section deals with two aspects: the configuration file for sendmail X and the configuration options
for sendmail X.0.

1.3.1 Configuration File

sendmail 8 uses a configuration file that is supposedly easy to parse, but hard to read, understand, or
modify by a system administrator. Even though this was simplified by using a macro preprocessor (m4)
and a significantly simpler input file (mc), it is still considered complex. Moreover, there is no syntax
check for the mc file which makes it fairly user unfriendly.

Hence it is necessary that sendmail X uses a simpler and more flexible configuration file. We need a
syntax that allows us to keep options that belong together in a structured entity. This will be achieved
with a C like syntax using (initial) keywords and braces. Moreover, the syntax will be free form, i.e., it
will not depend on indentations, use of tabs, etc. It is also a bad idea to require special software, e.g.,

Sendmail X, May 4, 2005, 11:44 23

editors, to maintain the configuration files. For example, requiring a syntax oriented editor will add an
additional migration hurdle which must be avoided otherwise users may switch to a different MTA that
does not have such additional requirements.

Since sendmail X will consist of several modules, it is likely that there are several configuration files, at
least for modules that are really separate. Moreover, it might be useful to delegate certain parts of a
configuration to different administrators or even users. For example, it should be possible to delegate
the configuration of virtual domains to different administrators. However, this will not be implemented
in sendmail X.0, but the design will take this into consideration.

1.3.2 Configuration Options

sendmail X.0 will initially offer a subset of the (huge set of) configuration options of sendmail 8. It is
simply not possible to implement all of the accumulated features of sendmail 8 in the first version of
sendmail X within a reasonable timeframe and the limited resources we have.

1.4 Documentation

The documentation for sendmail X must fulfill different requirements with respect to its structure and
its formats. The latter is explained in the next section.

The sendmail documentation must at least consist of the following sections:

• simple introduction: what is sendmail X, what does it do.

• common installations with examples: this will be the important part for wide-spread use of sendmail
X. It should be a fast and short list of common examples.

• operational details: how does sendmail X work. This is usually required to understand in detail
what sendmail X can do.

• hints for tuning: based on the operational details, how can sendmail X be tweaked. This may include
hints for specific situations, e.g., high-volume mail server, limited memory, gateway functionality
only.

• details (reference manual): the nitty-gritty details, containing each option and an explanation,
including default value and acceptable values/ranges.

It is important that the documentation provides different levels of details. The current documentation is
not particularly well structured or organized. It more or less requires to read everything, which, however,
is not really necessary nor does it help someone who has a lot of other things to do besides installing an
MTA. Even though the installation of an MTA usually requires a bit more than

./configure && make && make test && make install && start

it is not really necessary to read about (or even understand) all parts of the MTA.

24 Sendmail X, May 4, 2005, 11:44

1.4.1 Documentation Format

The documentation that describes sendmail X must be written in a format that allows easy generation
of different versions including at least:

• plain ASCII text to read it online with a normal text editor or other simple tools like more(1),

• a printable version for high quality output on a printer, e.g., PostScript or PDF,

• a hypertext version (HTML) to allow simple following of cross-references with an HTML browser.

Chapter 2

Sendmail X: Architecture

This chapter describes the architecture of sendmail X. It presents some possible design choices for various
parts of sendmail X and explains why a particular choice has been made. Notice: several decisions haven’t
been made yet, there are currently a lot of open questions.

2.1 General Architecture of sendmail X

sendmail X consists of several communicating modules. A strict separation of functionality allows for a
flexible, maintainable, and scalable program. It also enhances security by running only those parts with
special privileges (e.g., root, which will be used as a synonym for the required privileges in this text)
that really require it.

Some terms relevant for e-mail are explained in a glossary 2.17.

2.1.1 Overview

sendmail X consists of the following modules:

• Supervisor (MCP): responsible for starting all components and supervising them.

• Queue manager (QMGR): controls message routing through the MTA, mail delivery, and imple-
ments general policy.

• SMTP server (SMTPS): Accepts incoming mails.

• Address resolver (AR): performs address resolutions including various map lookups.

• Message Submission Program (MSP): Command line tool to transfer messages to the SMTP server.

• Delivery agents (DA): for local (LDA) and remote delivery, one specialized agent implements SMTP
client side (SMTPC).

sendmail X uses persistent databases for content (CDB) and for envelope (routing) information (EDB).
The content DB is written by the SMTP servers only, and read by the delivery agents. The envelope
DBs are under complete control of the queue manager.

25

26 Sendmail X, May 4, 2005, 11:44

Figure 2.1: Sendmail X: Overall Structure

There are other components for sendmail X, e.g., a recovery program that can reconstruct an EDB after
a crash if necessary, a program to show the content of the mail queue (EDB), and at least hooks for
status monitoring.

2.1.2 Remarks about Performance

Since sendmail X is designed to have a lifetime of about one decade, it must not be tuned to specific
bottlenecks in common computers as they are known now. For example, even though it seems common
knowledge that disk I/O is the predominant bottleneck in MTAs, this isn’t true in all cases. There is

Sendmail X, May 4, 2005, 11:44 27

hardware support (e.g., disk system with non-volatile RAM) that eliminates this bottleneck1. Moreover,
some system tests show that sendmail 8 is CPU bound on some platforms. Therefore the sendmail X
design must be well-balanced and it must be easy to tune (or replace) subsystems that become bottlenecks
in certain (hardware) configurations or situations.

2.1.3 Remarks about Configuration

This section contains some general remarks about configuring sendmail X. Todo: fill this in, add a new
section later on that defines the configuration.

2.1.3.1 Simplicity and Flexibility

sendmail X must be easy enough to configure such that it does not require reading lots of files or even large
section of a single file (see also Section 1.4). A “default” configuration may not require any configuration at
all, i.e., the defaults should be stored in the binary and most of the required values should be automagically
be determined at startup. A small configuration file might be necessary to override those defaults in case
the system cannot determine the right values. Moreover, it is usually required to tell the MTS for which
domain name to accept mail – by default a computer should have a FQDN but it is not advisable to
decide to accept mail for the domain name itself2

The configuration file must be suitable for all kinds of administrators: at one end of the spectrum are
those who just want to have an MTA installed and running with minimum effort, at the other end are
those who want to tweak every detail of the system and maybe even enhance it by other software.

2.1.3.2 Option Grouping

Only a few configuration options apply globally, many have exceptions or suboptions that apply in
specific situations. For example, sendmail 8 has timeouts for most SMTP commands and there are
separate timeouts to return queued messages for different precedence values. Moreover, some features
can be determined by rulesets, some options apply on a per connection basis, etc. In many cases it is
useful to group configuration options together instead of having those options very fine grained. For
examples, there are different SMTP mailers in sendmail 8 that create configuration groups (with some
preselected set of options) which can be selected via mailertable (or rules). Instead of having mailer
options per destination host (or other criteria), different options are grouped together and then an option
set is selected. This can reduce the amount of configuration options that need to be stored (e.g., it’s a
two level mapping: address → mailer → mailer flags, instead of just one level in which each argument
can have different function values: address → mailer and mailer flags).

However, it might be complicated to actually structure options in a tree like manner. For example, a
rewrite configuration option may be

• per daemon, e.g., only applies to the MSA, not the MTA,

• per mailer, e.g., for local delivery but not for SMTP,

• per address type, e.g., for envelope recipient but not for header addresses.

1Price/MB for RAM approaches that for a hard disk
2For example, if the hostname is host.domain.tld then the system should by default accept mail for that name as local,

but it should not treat domain.tld as local too.

28 Sendmail X, May 4, 2005, 11:44

Question: can we organize options into a tree structure? If not, how should we specify options and how
should we implement them? Take the above example: there might be rewrite options per mailer and per
address type (seems to make sense). However, in which order should those rewrite options be processed?
Does that require yet another option?

A simple tree structure is not sufficient. For example, some option groups may share common suboptions,
e.g., rewrite rules. Instead of having to specify them separately in each group, it makes more sense to
refer to them. Here is an example from sendmail 8: there are several different SMTP mailers, but most
of them share the same rewrite rulesets. In a strict tree structure each mailer would have a copy of the
rewrite rulesets, which is neither efficient nor simple to maintain. Hence there must be something like
“subroutines” which can be referenced. In a sendmail 8 configuration file this means there is a list of
rulesets which can be referenced from various places, e.g., the binary (builtin ruleset numbers) and the
mailers.

This means internally a configuration might be represented as a graph with references to various subcon-
figurations. However, this structure can be unfolded such that is actually looks like a tree. Hence, the
configuration can conceptually be viewed as a tree.

2.1.3.3 Accessing and Changing the Configuration

There should be a way to query the system about the current configuration and to change (some) options
on the fly. A possible interface could be similar to sysctl(8) in BSD. Here options are structured in a
tree form with names consisting of categories and subscategories separated by dots, i.e., “Management
Information Base” (MIB) style. Such names could be daemon.MTA.port, mailer.local.path, etc. If we can
structure options into a tree as mentioned in the previous section then we can use this naming scheme.
Whether it will be possible to change all parts on the fly is questionable, esp. since some changes must
be done as transaction (all at once or none at all).

2.1.4 Security Considerations

Each section of this chapter that describes a module of sendmail X has a subsection about security
considerations for that particular part. More discussion can be found in Section 2.14.

2.1.5 Control and Data Flow

This section gives an overview over the control and data flow for a typical situation, i.e., e-mail received
via SMTP. This should give an idea how the various components interact. More details can be found in
the appropriate sections.

1. An incoming message arrives via SMTP. The SMTP server (see Section 2.5) receives the connection
attempt and contacts the queue manager (see Section 2.4) with that information. Both together
decide whether to accept or reject the connection.

2. If SMTP commands are used that change the status of a session (e.g., STARTTLS, AUTH), those
are executed and their effects are stored in the session context.

3. For each transaction a new envelope is created and the commands are communicated to the queue
manager and the address resolver for validation and information. Other processes (esp. milters)
might be involved too and the commands are either accepted or rejected based on the feedback
from all involved processes.

Sendmail X, May 4, 2005, 11:44 29

4. When an e-mail is received (final dot), the queue manager and the SMTP server must either write
the necessary information to stable (persistent) storage3 or a delivery agent must take over and
deliver the e-mail to all recipients immediately. The final dot is only acknowledged after either of
these actions completed successfully.

5. The queue manager schedules delivery for the received e-mail in an appropriate matter (according
to local policies and current system status etc). Note: delivery scheduling is done per recipient, not
per envelope as it was in earlier sendmail versions. This makes it simpler to reuse open connections.

6. A delivery agent receives information from the queue manager which mail (content id) to send
from which sender to which recipient(s). It informs the queue manager about success/(temporary)
failure of its delivery attempts(s). The queue manager updates its EDB accordingly.

7. If all recipients in an envelope have been successfully delivered, the corresponding data is removed
from the EDB (maybe triggering a DSN) and the content is removed from the CDB.

2.2 Configuration

2.2.1 General

Question: can we treat a configuration file like a programming language with

1. declarations: in which case do we need to declare things?

2. definitions: Definitions would be for things like SMTP servers: daemons which have attributes like
port number and IP address to listen on, or delivery agents which have attributes like protocol and
hostname to use.

3. functions (actions): These would be called by the binary in certain places (stages of the ESMTP
protocol), e.g., when a connection is made, when a MAIL command is received etc.

Definitions do not depend on anything else, they define the basic structure (and behavior?) of the system.
There are fixed attributes which cannot be changed at runtime, e.g., port number, IP address to listen
on. Attributes which can change at runtime, e.g., the hostname to use for a session, fall in category 3,
i.e., they are functions which can determine a value at runtime.

The distinction between definitions and functions is largely determined by the implementation and the
underlying operating system as well as the application protocol to implement and the underlying trans-
port protocol. When defining an SMTP daemon (or a DA) some of its attributes must be fixed (de-
fined/specified) in the configuration, these are called immutable. For example, it is not possible to
dynamically change the port of the SMTP daemon because that’s the way the OS call bind(2)4 works.
However, the IP address of the daemon does not need to be fixed (within the capabilities of the OS and
the available hardware), i.e., it could listen on exactly one IP address or on any. Such configuration
options are called variable or mutable5.

It seems to be useful to make a list of configuration options and their “configurability”, i.e., whether they
are fixed, or at which places they can change, i.e., on which other values they can depend.

3That is storage that does not lose its content during a system failure, e.g., power loss. Such storage is usually a disk,
but not DRAM.

4It is possible not to specify a port but then the OS selects one which isn’t useful for an SMTP server.
5Better name?

30 Sendmail X, May 4, 2005, 11:44

2.2.2 Syntax

As required, the semantics of the configuration file does not depend on its layout, i.e., spaces are only
important for delimiting syntactic entities, tabs (whitespace) do not have a special meaning.

The syntax of the sendmail X configuration files is as follows:

<conf> ::= <entries>
<entries> ::= <entry> *
<entry> ::= <option> | <section>
<section> ::= <keyword> [<name>] ”{” <entries> ”}” [”;”]
<option> ::= <option-name> ”=” <value>
<value> ::= <name> ”;” | <values> [”;”]
<values> ::= ”{” <name-list> ”}”

This can be shortened to (remove the rule for entries):

<conf> ::= <entry> *
<entry> ::= <option> | <section>
<section> ::= <keyword> [<name>] ”{” <conf> ”}” [”;”]
<option> ::= <option-name> ”=” <value>
<value> ::= <name> ”;” | <values> [”;”]
<values> ::= ”{” <name-list> ”}”

Generic definition of “list”:

<X-list> ::= <X> | <X> ”,” <X-list> [”,”]

That is, a configuration file consists of a several entries, each of which is either a section or an option. A
section starts with a keyword, e.g., mailer, daemon, rewriterules, and has an optional name, e.g., daemon
MTA. Each section contains a section of entries which is embedded in curly braces. Each syntactic entity
that isn’t embedded in braces is terminated with a semicolon. An entry in a section can be an option
or a (sub)configuration. To make writing configuration files simpler, lists can have a terminating comma
and a semicolon can follow after <values>. That makes these symbols terminators not separators.

Examples:

mailer smtp {
Protocol = SMTP;
Connection = TCP;
Port = mtp;
flags { DSN }
MaxRecipientsPerSession = 5;

};
mailer lmtp {

Protocol = LMTP;
flags = { LocalRecipient, Aliases }
Path = "/usr/bin/lmtp";

};
Daemon MTA {

smtps-restriction = { qualified-sender, resolvable-domain }
};
Map Mailertable { type = hash; file = "/etc/smx/mailertable"; };
Rewrite {

Sendmail X, May 4, 2005, 11:44 31

Envelope {
sender = { Normalize, Canonify },
recipient = { Normalize, Virtual, Mailertable }

};
Header {

sender = { Normalize },
recipient = { Normalize }

};
};
Check {

DNSBL MyDNSBL { Orbd, Maps }
Envelope {

sender = { Qualified, MyDNSBL },
recipient = { Qualified, AuthorizedRelay }

};
};

The usual rules for identifiers (list of characters, digits, and underscores) apply. Values (<name>) that
contain spaces must be quoted, other entries can be quoted, but don’t need to. Those quotes are stripped
in the internal representation. Backslashes can be used to escape meta-symbols.

Todo: completely specify syntax.

Note: it has been proposed to make the equal sign optional for this rule:

<option> ::= <option-name> [”=”] <value>

However, that causes a reduce/reduce conflict when the grammar is fed into yacc(1)6 because it conflicts
with

<section> ::= <keyword> [<name>] ”{” <entries> ”}” [”;”]

That is, with a lookahead of one it can not be decided whether something reduces to <option> or
<section>. If the parser “knows” whether some identifier is a keyword or the name of an option then the
equal sign can easily be optional. However, doing so violates the layering principle because it “pushes”
knowledge about the actual configuration file into the parser where it does not really belong: the parser
should only know about the grammar. Of course if would be possible to write a more specific grammar
that includes lists of options and keywords. However, keeping the grammar abstract (hopefully) allows
for simpler tools to handle configuration files. Moreover, if new options or keywords are added the parser
does not need to change, it is only the upper layers that perform semantic analysis of a configuration file.

2.2.2.1 Comments

Most configuration/programming languages provide at least one way to add comments: a special character
starts a comment which extends to the end of the line. Some languages also have constructs to end
comments at a different place than the end of a line, i.e., they have characters (or character sequences)
that start and end a comment. To make it even more complicated, some languages allow for nested
comments. Text editors make it fairly easy to replace the begin of a line with a character and hence it
is simple to “comment out” entire sections of a (configuration) file. Therefore it seems sufficient to have
just a simple comment character (“#”) which starts a comment that extends to the end of the current
line. The comment character can be escaped, i.e., its special meaning disabled, by putting a backslash

6Thanks to John Kennedy for testing this.

32 Sendmail X, May 4, 2005, 11:44

in front of it as usual in many languages.

2.2.2.2 Internationalization

For now all characters are in UTF-8 format which has ASCII has a proper subset. Hence it is possible to
specify texts in a different language, which might be useful in some cases, esp. if the configuration syntax
is also used in other projects than sendmail X.

2.2.2.3 Strings and other Types

Strings are embedded (as usual) in double quotes. To escape special characters inside strings the usual C
conventions are used, probably enhanced by a way to specify unicode characters (“\uVALUE”). Strings
can not continue past the end of a line, to specify longer strings they can be continued by starting the
next line (after any amount of white space) with a double quote (just like in ANSI C).

The parser should be able to to some basic semantic checks for various types. That is, it can detect
whether strings are well formed (see above), and it must understand basic types like boolean, time
specification, file names, etc.

2.2.2.4 Inclusion

There has been a wish to include configuration data via files or even databases, e.g., OpenLDAP at-
tributes.

2.2.3 Alternative Configuration Formats

There are some suggestions for alternative configuration formats:

1. a simple style that uses a line oriented syntax:

option = value

This syntax is not flexible enough to describe the configuration of an MTA, unless some hacks are
employed as done by postfix which uses an artificial structuring by naming the options “hierar-
chically”. For example, sendmail 8 uses a dot-notation to structure some options, e.g., timeouts
(Timeout.queuereturn.urgent); postfix uses underscores for a similar purpose, e.g.,

smtpd_recipient_restrictions =
smtpd_sender_restrictions =

local_destination_concurrency_limit =
default_destination_concurrency_limit =

An explicit hierarchical structure is easier to understand and to maintain.

2. XML. While this is a syntax that is easily parsable by a computer, it is hard to read and especially
hard to edit by a human. According to the requirements stated in Section 1.3.1, the latter is a
problem that must be avoided.

Sendmail X, May 4, 2005, 11:44 33

The syntax of a configuration file could be easily changed to fit various tastes. For example, instead of
using braces and section a “flat” format could be used that is semantically equivalent. This part of the
example listed earlier:

Rewrite {
Envelope {

sender = { Normalize, Canonify },
recipient = { Normalize, Virtual, Mailertable }

};
};
Check {

DNSBL MyDNSBL { Orbd, Maps }
Envelope {

sender = { Qualified, MyDNSBL },
recipient = { Qualified, AuthorizedRelay }

};
};

could be also written as:

Rewrite.Envelope.sender= Normalize, Canonify
Rewrite.Envelope.recipient = Normalize, Virtual, Mailertable
Check.DNSBL[MyDNSBL]= Orbd, Maps
Check.Envelope.sender = Qualified, MyDNSBL
Check.Envelope.recipient = Qualified, AuthorizedRelay

Of course other delimiters than dot (for hierachy) and brackets (for section names) can be used. However,
it is easy to define a bijective function that transforms configuration files from one syntax into another
and preserving the semantics. This also applies for transformation to/from XML. There could be various
frontends that scan and parse a configuration file according to some syntax and generate the same internal
structure that is then used by some applications.

2.2.4 Configurability

SMTP defines a structure which influences how a SMTP server (and client) can be configured. The
topmost element in SMTP is a session, which can contain multiple transactions, which can contain
multiple recipients and one messsage. Each of these elements has certain attributes (properties). For
example

• a SMTP session has:

– a client IP address and port, a server IP address and port (the IP quadruple).

– possibly STARTTLS and AUTH active, including their attributes, e.g., TLS version, SASL
mechanism, cipher algorithm, and key length.

• a SMTP transaction has:

– a sender address and optional arguments, e.g., for DSN.

• a SMTP recipient has:

34 Sendmail X, May 4, 2005, 11:44

– an address and optional arguments.

This structure restricts how a SMTP server can be configured. Some things can only be selected (“con-
figured”) at a certain point in a session, e.g., a milter can not be selected for each recipient7, neither
can a server IP address selected per transaction, other options have explicit relations to the stage in a
session, e.g., MaxRecipientsPerSession, MaxRecipientsPerTransaction (which might be better expressed
as Session.MaxRecipients and Transaction.MaxRecipients or Session.Transaction.MaxRecipients). Some
options do not have a clear place in a session at all, e.g., QueueLA, RefuseLA: do these apply to a session,
a transaction or a recipient? It is possible to use QueueLA per recipient, but only in sendmail X because
it does scheduling per recipient, in sendmail 8 scheduling is done per transaction and hence QueueLA can
only be per transaction. This example shows that an actual implementation restricts the configurability,
not just the protocol itself.

If a SMTP session is depicted as a tree (where the root is a session) then there is a “maximum depth”
for each option at which it can be applied. As explained before, that depth is determined

1. by the structure of SMTP,

2. explicitly by tying it to an SMTP stage,

3. by the implementation.

Question: taking these restrictions into consideration, can we specify the maximum depth for each
configuration option at which the setting the option is possible/makes sense? Moreover, can we specify
a range of depths for options? For example: QueueLA can be a global option, an option per daemon, an
option per session, etc. If such a range can be defined per option, then the configuration can be checked
for violations. Moreover, it restricts the “search” for the value of an option that must be applied in the
current stage/situation.

Question: it seems the most important restriction is the implementation (beside the structure of SMTP
of course). If the implementation does not check for an option at a certain stage, then it does not make
any sense to specify the option at that stage. While for some options it is not much effort to check it at
a very deep level, for others that means that data structures must be replicated or be made significantly
more complex. Examples:

1. Checking a simple integer value against a global value, e.g., RefuseLA or MinFreeDiskSpace, at the
recipient stage is fairly easy, it requires just a few lines of code at that place. Checking RefuseLA
at session, transaction, and recipient stage requires duplication of code, at least some function must
be called at all of the places.

2. Checking the connection rate per recipient8 requires that the structure which stores the connection
rate actually takes the recipient into account instead of just the client IP address. This obviously
makes the structure more complicated, in this case the implementation would need to be changed
significantly. Another example: reject mail from an IP address unless the recipient is postmaster.
Here the application of the option must be “delayed” until all required information (IP address
and recipient) is available. More about this... can this specified in the configuration? Per recipient
rejection:

recipient postmaster { reject-client-ip {map really-bad-abusers} }
recipient * { reject-client-ip {map all-abusers} }

7this is a consequence of the way milters are designed, not a direct consequence of SMTP.
8this may not be a particular good example.

Sendmail X, May 4, 2005, 11:44 35

This brings us back to the previous question: Question: can we specify the maximum depth for each
configuration option at which the setting the option makes sense or at which it is possible without making
the implementation too complex.

There are other configuration options which do not really belong to that structure, e.g., “mailers” (as
they are called in sm8). A mailer defines a delivery agent (DA), it is selected per recipient. Hence a DA
describes the behavior of an SMTP client, not an SMTP server. In turn, many options are per DA too,
while others only apply to the server, e.g., milters are server side only9.

Problem: STARTTLS is a session atttribute, i.e., whether it is used/offered is defined per client/server
(per session). However, it is useful (and possible) to require certain STARTTLS features per recipient10

(as sm8 does via access db and ruleset). It is not possible to say: only offer STARTTLS feature X if
the recipient is R, but it is possible to say: if the recipient is R then STARTTLS feature X must be in
use (active). Moreover, it’s not possible to say: ”if the recipient is R, the milter M must be used.” How
do those configuration options fit into the schema explained above? What’s the qualitative difference
between these configuration options?

1. STARTTLS is offered by the server and selected by the client, there is a negotiation in the hand-
shake. If TLS feature X is required for recipient R then there is usually and out-of-band agreement
between MTA admins to do that, because this cannot be negotiated in ESMTP11.

2. Milter is not part of SMTP, it is solely defined by the local admin and by the design/implementation.
Changing the features of a milter based on a recipient cannot be done in ESMTP but in the milter
itself.

3. STARTTLS features can be set per recipient in SMTPC. Does that make STARTTLS an option per
mailer, i.e., a mailer defines whether it uses STARTTLS (including its attributes)? The definition
of a DA is probably similar in structure to the definition of a SMTP server. However, it is possible
to specify session behavior per recipient, because a DA is selected per recipient12.

Questions: What’s the qualitative difference between these examples? What is the underlying structure?
How does the structure define configurability, i.e., what defines why a behavior/option can be dependent
on something but not on something else?

For example: STARTTLS in client (SMTPC): this isn’t really: “use STARTTLS with feature X if recipient
R will be send”, but it is: “if recipient R will be send then STARTTLS with feature X must be active”
(similar to SMTPS). However, it is conceivable to actually do the former, i.e., make a session option based
on recipient because smX can do per recipient scheduling, i.e., a DA is selected per recipient. Hence it
can be specified that a session to deliver recipient R must have STARTTLS feature X. However, doing
that makes connection reuse significantly more complicated (see Section 3.4.10.2). Question: doesn’t this
define a specific DA? Each DA has some features/options. Currently the use of STARTTLS is orthogonal
to DAs (e.g., almost completely independent) hence the connection reuse problem (a connection is defined
by DA and server, not DA and server and specific features because those features should be in the DA
definition). Hence if different DAs are defined based on whether STARTTLS feature X should be used,
then we tied a session to DA and server. This brings us to the topic of defining DAs. Question: what do
we need “per DA” to make things like connection reuse simple? Note: if we define DAs with all features,
then we may have a lot of DAs. Hence we should restrict the DA features to those which are really specific
to a DA (connection/session/transaction) behavior, and cannot be defined independently. For example,

9at least right now.
10that is, rejecting a recipient if the feature has not been used/is not active.
11Because STARTTLS is per session, not per recipient, hence it is not possible to do this in the server, but it is (theoret-

ically) possible in the client.
12which is an implementation decision, with a different implementation this would not be possible.

36 Sendmail X, May 4, 2005, 11:44

it doesn’t seem to be useful to have a DA for each different STARTTLS and AUTH feature, e.g., TLS
version, SASL mechanism, cipher algorithm, and key length. However, can’t we leave that decision up
to the admin?

2.2.4.1 Consistency

In addition to simple syntax checks, it would be nice to check a configuration also for consistency.
Examples?

2.2.5 Configuration File Structure

As explained in Section 2.1.3.2 there are some issues with the structuring of the configuration options.
Here is a simple example that should serve as base for a discussion:

Daemon MTA {
smtps-restriction { qualified-sender, resolvable-domain }
mailer smtp { Protocol SMTP; Port smtp; flags { DSN }

MaxRecipientsPerSession 25;
};
Aliases { type hash; file /etc/smx/aliases; };
mailer lmtp { Protocol LMTP; flags { LocalRecipient, Aliases }

Path "/usr/bin/lmtp";
};
Map Mailertable { type hash; file /etc/smx/mailertable; };
Rewrite {

Envelope { sender { Normalize },
recipient { Normalize, Virtual, Mailertable }

};
Header { sender { Normalize }, recipient { Normalize } };

};
};

Daemon MSA {
mailer smtp { Protocol SMTP; Port submission; flags { DSN }

MaxRecipientsPerSession 100;
};
Aliases { type hash; file /etc/smx/aliases; };
mailer lmtp { Protocol LMTP; flags { LocalRecipient, Aliases }

Path "/usr/bin/lmtp";
};
Rewrite {

Envelope { sender { Normalize, Canonify },
recipient { Normalize, Canonify }

};
Header { sender { Normalize, Canonify },

recipient { Normalize, Canonify } };
};
};

Sendmail X, May 4, 2005, 11:44 37

This configuration specifies two daemons: MTA and MSA which share several subconfigurations, e.g.,
aliases and lmtp mailer, that are identical in both daemons. As explained in Section 2.1.3.2 it is better to
not duplicate those specifications in various places. Here is the example again written in the new style:

aliases MyAliases { type hash; file /etc/smx/aliases; };
mailer lmtp { Protocol LMTP; flags { LocalRecipient, Aliases }

Path "/usr/bin/lmtp";
};

Daemon MTA {
smtps-restriction { qualified-sender, resolvable-domain }
mailer smtp { Protocol SMTP; Port smtp; flags { DSN }

MaxRecipientsPerSession 25;
};
aliases MyAliases;
mailer lmtp;
Map Mailertable { type hash; file /etc/smx/mailertable; };
Rewrite {

Envelope { sender { Normalize },
recipient { Normalize, Virtual, Mailertable }

};
Header { sender { Normalize }, recipient { Normalize } };

};
};

Daemon MSA {
mailer smtp { Protocol SMTP; Port submission; flags { DSN }

MaxRecipientsPerSession 100;
};
aliases MyAliases;
mailer lmtp;
Rewrite {

Envelope { sender { Normalize, Canonify },
recipient { Normalize, Canonify }

};
Header { sender { Normalize, Canonify },

recipient { Normalize, Canonify } };
};
};

Here the subconfigurations aliases and lmtp mailer are referenced explicitly from both daemon declara-
tions. This is ok if there are only a few places in which a few common subconfiguration are referenced,
but what if there are many subconfigurations or many places? In this case a new root of the tree would
be used which declares all “global” options which can be overridden in subtrees. So the configuration
tree would look like:

generic declarations
common root
daemon
mailer
?

38 Sendmail X, May 4, 2005, 11:44

Question: what is the complete structure of the configuration tree? Question: can the tree be specified
by the configuration file itself, or is its structure fixed in the binary?

The next problem is how to find the correct value for an option. For example, how to determine the
value for MaxRecipientsPerSession in this configuration:

MaxRecipientsPerSession 10;
Daemon MTA {
MaxRecipientsPerSession 25;
mailer smtp { ... }; };
mailer relay { MaxRecipientsPerSession 75; }; };
Daemon MSA {
MaxRecipientsPerSession 50;
mailer smtp { MaxRecipientsPerSession 100; }; };

Does this mean the system has to search in the tree for the correct value? This wouldn’t be particularly
efficient.

sendmail 8 also offers configuration via the access database, i.e., some tagged key is looked up to find
potential changes for the configuration options that are specified in the cf file. For example, srv features
allows to set several options based on the connecting client (see also Section 2.2.7.2). This adds another
“search path” to find the correct value for a configuration option. In this case there are even two
tree structures that need to be searched which are defined by the host name of the client and its IP
address, both of which are searched for in the database by removing the most significant parts of it, e.g.,
Tag:host.sub.tld, Tag:sub.tld, Tag:tld, Tag:.

2.2.6 Option Names

Option names should be meaningful and intuitive, i.e., a name should convey what the option does or
specifies, and when someone wants the system to do something, he should find the corresponding option
name fairly easily. Example: fd socket is not a good option name, it is not clear what the option does;
socket to pass fd is significantly better.

All option names should be consistent, i.e., if one name uses a certain term for some item then another
option must not use a different term for the same item. This also include the spelling of option names as
well as their structure. Example: do not use path and filename to denote the same thing.

See also Section 3.2.2.

2.2.7 Dynamic Configuration

What about a “dynamic” configuration, i.e., something that contains conditions etc? For example:

if client IP = A and LA < B
then
accept connection

else if client IP in net C and LA < D and OpenConnections < E
then
accept connection

else if OpenConnections < F

Sendmail X, May 4, 2005, 11:44 39

then
accept connection

else if ConnectionRate < G
then
accept connection

else
reject connection

fi

Note: it might be not too hard to specify a functional configuration language, i.e., one without side effects.
However, experience with sm8 shows that temporary storage is required too13. As soon as assignments
are introduced, the language becomes significantly more complex to implement. Moreover, having such
a language introduces another barrier to the configuration: unless it is one that is established and widely
used, people would have to learn it to use smX efficiently. For example, the configuration language of
exim allows for runtime evaluation of macros (variables) and the syntax is hard to read (as usual for
unknown languages). There are a few approaches to deal with this problem:

1. define clean interfaces for C, i.e., function calls, their API, how variables can be accessed, etc. This
is something like the module concept discussed elsewhere (2.13 and 3.17).

2. provide an interface to external languages, e.g., perl, python, etc. This would be very flexible but
makes implementation complicated.

2.2.7.1 Configuration: Conditionals

One proposal for the smX syntax includes conditionals in the form of

<entry> ::= <option> | <section>
<option> ::= <option-name> [”=”] <value>
<condopt> ::= ”if” ”(” <condition> ”) <option>

2.2.7.2 Configuration: Reference to Maps

In sendmail 8 it proved to be useful to have some configuration options stored in maps. These can be as
simple as reply codes to certain phases in ESMTP and for anti-relay/anti-spam checks, and as complex
as the srv features rulesets (see also Section 2.2.5).

There are several reasons to have configuration options in maps:

1. Maps provide a efficient lookup features (normal maps however do not offer any form of pattern
matching). This is important for things like blacklists which in some cases contains thousands if
not hundreds of thousands of entries.

2. In sendmail 8 changing a configuration file requires restarting the daemon, while changing maps
can be done without that interruption (sm8 dynamically opens maps).

If not just anti-spam data is stored in maps but also more complicated options (as explained before: map
entries for srv features) then those options are usually not well structured, e.g., for the example it is

13See storage map in sm8.

40 Sendmail X, May 4, 2005, 11:44

just a sequence of single characters where the case (upper/lower) determines whether some features is
offered/required. This does not fulfill the readability requirements of a configuration syntax for smX.

Question: how to integrate references to maps that provide configuration data into the configuration file
syntax and how should map entries look like? One possibility way is to have a set of option combined
into a group and reference that group from the map. For example, instead of using

SrvFeatures:10 l V

it would be

LocalSrvFeatures { RequestClientCertificate=No; AUTH=require; };

SrvFeatures:10 LocalSrvFeatures

2.2.8 Default Configuration

The defaults of the configuration should be compiled into the binary instead of having a required config-
uration file which contains all default values.

Advantages:

1. The default configuration file would be rather larger if it needs to have all default settings for all
configuration options.

2. there’s no need to have a big configuration file that sets all the necessary options (even if that
“default” configuration file is just “included” somehow in the “user” configuration file)

3. avoids out of sync between a default configuration file and the binary: new options have the correct
defaults, “useful” changes apply without updating the default configuration file.

4. people will edit the default configuration file, in sm8 this has been noticed for devtools/OS/file,
sendmail.cf, and other examples, e.g,, startup files in an OS, and hence make upgrading hard.

Disadvantages:

1. this may change “silently” options, and even though it’s documented in the release notes, people
will still be “surprised”.

2.2.9 Displaying Current Configuration

It must be possible to query the various smX components to print their current configuration settings as
well as their current status. The output should be formatted such that it can be used as a configuration
file to reproduce the current configuration.

2.2.10 Dynamically Changing Configuration

It must be possible to tell the various smX components to change their current configuration settings.
This may not be practical for all possible options, but at least most of them should be changeable while

Sendmail X, May 4, 2005, 11:44 41

the system is running. That minimizes downtime to make configuration changes, i.e., it must not be
required to restart the system just to change some “minor” options. However, options like the size of
various data structures may not be changeable “on the fly”.

2.2.11 Configuration Example for PreAlpha Version

sendmail X.0.0.PreaAlpha9 has the following configuration parameters:

1. QMGR:

(a) definitions (see Section 2.2.1, 2): size of various data structures: AQ, IBDB, IQDB rsc size,
IQDB hash table size.
Various other definitions: postmaster address for double bounces14, log level and debug level
could be more specific, i.e., per module in the code, but probably not per something external,
configuration flags, time to wait for SMAR, SMTPC to be ready.
It doesn’t seem to be very useful to make these dependent on something: minimum and “ok”
free disk space (KB).

(b) initial and maximum number of concurrent connections to one IP addr: this could be dependent
on DA and destination IP address.

(c) initial and maximum delay for retries, maximum time in queue: this could be dependent on
many things, e.g., precedence, size, sender, recipient.

(d) maximum connection rate per 60s, maximum number of open connections (SMTPS): these
could be dependent on SMTP server and client IP address.

(e) maximum time before scheduling a DSN, maximum time in AR and in DA.

2. SMTPS:

definitions (see Section 2.2.1, 2): log level and debug level (see above), heap check level, group id
(numeric) for CDB, time to wait for QMGR to be ready.

run in interactive mode, serialize all accept() calls, perform one SMTP session over stdin/stdout,

socket over which to receive listen fd, specify thread limits per listening address,

create specified number of processes, bind to specified address – multiple addresses are permitted,
maximum length of pending connections queue,

I/O timeout: could be per daemon and client IP address,

client IP addresses from which relaying is allowed, recipient addresses to which relaying is allowed.

3. SMTPC:

All of these are definitions:

log level and debug level (see above), heap check level, time to wait for QMGR to be ready, run in
interactive mode, create specified number of processes, specify thread limits.

These could be dependent on DA or even server address: socket location for LMTP, I/O timeout,
connect to (server)port.

14this could be per domain, but which domain?

42 Sendmail X, May 4, 2005, 11:44

4. SMAR:

All of these are runtime options, i.e., they are specified when the binary is started (hence definitions
in the sense of Section 2.2.1, 2):

log level and debug level (see above), IPv4 address for name server, DNS query timeout, use TCP
for DNS queries instead of UDP, use connect(2) for UDP.

5. MCP:

All of these are definitions: name: string (name of program/service); port: number or service en-
try (optional); socket.name: name of socket to listen on: path (optional); tcp: currently always
tcp (could be udp); type: type of operation: nostartaccept, pass, wait; exchange socket: socket
over which fd should be passed to program; processes min: minimum number of processes; pro-
cesses max: maximum number of processes; user: run as which user (user name, i.e., string); path:
path to executable; args: arguments for execv(3) call.

MCP {
processes_min=1; processes_max=1; type=wait;
smtps {
port=25;
type=pass;
exchange_socket=smtps/smtpsfd;
user=smxs;
path="../smtps/smtps";
arguments="smtps -w 4 -d 4 -v 12 -g 262 -i -l . -L smtps/smtpsfd"; }

smtpc {
user=smxc;
path="../smtpc/smtpc";
arguments="smtpc -w 4 -P 25 -d 4 -v 12 -i -l ."; }

qmgr {
user=smxq;
path="../qmgr/qmgr";
arguments="qmgr -w 4 -W 4 -B 256 -A 512 -d 5 -v 12"; }

smar {
user=smxm;
path="../smar/smar";
arguments="smar -i 127.0.0.1 -d 3 -v 12"; }

lmtp {
socket_name="lmtpsock";
socket_perm="007";
socket_owner="root:smxc";
type=nostartaccept;
processes_min=0;
processes_max=8;
user=root;
path="/usr/local/bin/procmail";
arguments="procmail -z"; }

};

Note: some definitions could be functions (see Section 2.2.1), e.g., I/O timeout could be dependent on
the IP address of the other side or the protocol, debug and log level could have similar dependencies. As
explained in Section 2.2.4 the implementation restricts how “flexible” those values are.

Sendmail X, May 4, 2005, 11:44 43

Currently hostname is determined by the binary at runtime. If it is set by the configuration then it could
be: global, per SMTP server, per IP address of client, per SMTP client, per IP address of server. This
is one example of how an options can be set at various depths in the configuration file. Would this be a
working configuration file?

Global { hostname = my.host.tld; }
Daemon SMTPS1 { Port=MTA; hostname=my2.host.tld;
IP-Client { IP-ClientAddr=127.*; hostname=local.host.tld;} }

DA SMTPC1 { hostname=out1.host.tld;
IP-Server { IP-ServerAddr=127.*; hostname=local.host.tld;}
IP-Server { IP-ServerAddr=10.*; hostname=net.host.tld;} }

The lines that list an IP address are intended to act as restrictions, i.e., if the IP address is as follows
then apply this setting. Question: Is this the correct way to express that? What about more complicated
expressions (see Section 2.2.7)?

In principle these are conditionals:

hostname = my.host.tld;
if (Port==MTA) { hostname=my2.host.tld;
if (IP-ClientAddr==127.*) hostname=local.host.tld; }

2.2.11.1 Anti-Spam Configuration for PreAlpha Version

Question: what are the requirements for anti-spam configuration for a (pre-)alpha version of sendmail
X?

1. allow relaying from a client IP address (client host name is not yet supported: no reverse lookup),
or to a recipient domain. This is currently implemented via regular expressions, it would be nice
to extend this to map lookups.

Not yet available: allow relaying based on TLS.

2. rejection of client IP address, sender address (parts of it), recipient address.

This brings in all the subtleties from sm8, especially delay-checks. What’s a simple way to express
this?

The Control flow in sm8 is explained in Section 3.5.2.6.

Note: for the first version it seems to the best to use a simple configuration file without any conditionals
etc. If an option is dependent on some data, then the access method from sm8 should be used. This
allows us to put that data into a well known place and treat it in a matter that has been successfully
used before. Configuration like anti-relaying should be “hard-wired” in the binary and their behavior
should only be dependent on data in a map. This is similar to the mc configuration “level” in sm8; more
control over the behavior is archievable in sm8 by writing rules which in smX may have some equivalent
in modules.

2.2.12 Security Considerations

The configuration files must be protected from tampering. They should be owned by root or a trusted
user. sendmail must not read/use configuration files from untrusted sources, which not just means wrong

44 Sendmail X, May 4, 2005, 11:44

owners, but also files in unsecure directories.

2.3 Supervisor

Some processes require root privileges to perform certain operations. Since sendmail X will not have any
set-user-id root program for security reasons, those processes must be started by root. It is the task of
the supervisor process (MCP: Master Control Process) to do this.

There are a few operations that usually require root privileges in a mail system:

1. Bind to port 25 on Unix.

2. Delivery to a mailbox (file) that is owned by the recipient. 15

3. In some cases access to restricted data might be necessary, e.g., root-only maps.

The MCP will bind to port 25 and other ports if necessary before it starts the SMTP server daemons
(see Section 2.5) such that those processes can use the sockets without requiring root access themselves.

The supervisor process will also be responsible for starting the various processes belonging to sendmail X
and supervising them, i.e., deal with failures, e.g., crashes, by either restarting the failed processes or just
reporting those crashes if they are fatal. The latter may happen if a system has a hardware or software
failure or is (very) misconfigured. The MCP is also responsible for shutting down the entire sendmail X
system on request.

The configuration file for the supervisor specifies which processes to start under which user/group IDs.
It also controls the behavior in case of problems, i.e., whether they should be restarted, etc. This is
fairly similar to inetd, except that the processes are not started on demand (incoming connection) but
at startup and whenever a restart is necessary.

2.3.1 Security Considerations

The supervisor process runs as root and hence must be carefully written (just like any other sendmail
X program). Input from other sources must be carefully examined for possible security implications
(configuration file, communication with other parts of the sendmail X system).

2.4 Queue Manager

The queue manager is the central coordination instance in sendmail X. It controls the flow of e-mail
throughout the system. It implements (almost) all policies and coordinates the receiving and sending
processes. Since it controls several processes it is important that it will not slow them down. Hence
the queue manager will be a multi-threaded program to allow for easy scalability and fast response to
requests.

15There are systems in which local delivery doesn’t need to be done as the recipient, because the recipient is not a user
of the OS. In that case access must be authorized by other means which however is beyond the scope of sendmail (and this
document). Other systems, e.g., System V based Unix versions, use a group-writable mailbox which does not require root
access either.

Sendmail X, May 4, 2005, 11:44 45

The queue manager will handle several queues (see Section 2.4.1); there will be at least queues for
incoming mails, for scheduling delivery of mails, and for storing information about delayed mails.

The queue manager also maintains the state of the various other processes with which it communicates and
which it controls, e.g., the open connections of the delivery agents. It should also have knowledge about
the system to which it sends e-mails, i.e., whether they are accepting e-mails, probably the throughput
of the connections, etc.

Todo: add a complete specification what the QMGR does; at least the parts that aren’t related to
incoming SMTP.

2.4.1 Queues

One proposal for a set of possible queues is:

• incoming: queue (memory) in which currently incoming envelope data is stored, backed up on disk
(INCEDB).

• active: queue (memory) from which deliveries are scheduled (AQ or ACTEDB).

• deferred: queue (disk) in which envelope data is stored which refers to recipients that could have not
been delivered due to temporary problems (DEFEDB). This queue is also called “delayed” queue.

• bounce: queue (disk) to store information about permanently failed delivery attempts. This queue
can be used to coalesce DSNs, see also Section 2.4.6. Question: should it also used be to store data
for other DSNs, i.e., success and warning?

• hold: queue (disk) in which envelope data is stored due to policy decisions.

• ETRN: queue (disk) which stores envelopes that are only scheduled on ETRN requests.

• corrupt: queue (disk) which holds envelope data that got corrupted somehow; for further inspection
by a clueful person.

Having several on-disk queues has the following advantages:

• fewer entries per queue may result in faster search/access. It probably increases performance
because items that are on hold/ETRN must be not tried, they are skipped automatically during
queue lookups (to get a new entry into the active queue).

• special-purpose queues may lead to special-purpose (faster) implementations.

• it is possible to use different disks for different queues, e.g., slow disks for hold/ETRN, very fast
disks for incoming.

Disadvantages of several on-disk queues are:

• several different APIs: more work, more potential for errors.

• migration between queues is more complicated and possibly slower.

• specialized queues for every purpose may make it harder to add new behavior. sendmail 8.12 showed
that tying queues to behavior isn’t a good idea.

46 Sendmail X, May 4, 2005, 11:44

• fragmentation (the system has spare disk space available, but can’t proceed because one queue’s
partition has filled).

Since the disadvantages outweigh the advantages the number of on-disk queues will be minimized. The
deferred queue will become the main queue and contains also entries that are on hold or waiting for
ETRN. Envelopes for bounces should go to the main queue too. This way the status for an envelope is
available in one place (well, almost: the incoming queue may have the current status). Only the “corrupt”
queue is different since nobody ever schedules entries from this queue and it probably needs a different
format (no decision yet). To achieve the “effect” of having different queues it might be sufficient to build
different indices to access parts of the queue (logical queues). For example, the ETRN queue index has
only references to items in the queue that are waiting for an ETRN command.

The “active” and the “incoming” queues are resident in memory for fast access. The incoming queue is
backed up on stable storage in a form that allows fast modifications, but may be slow to reconstruct in
case the queue manager crashes. The active queue is not directly backed up on disk, other queues act
as backup. That is, the active queue is a restricted size cache (RSC) of entries in other queues. The
deferred queue contains items that have been removed from the active queue for various reasons, e.g.,
policy (deliver only on ETRN, certain times, quarantine due to milter feedback, etc), delays (temporary
failures, load too high, etc), or as the result of delivery attempts (success/failure/delay). The active queue
must contain the necessary information to schedule deliveries in efficient (and policy based) ways. This
implies that there is not just one way to access the data (one key), but several to accommodate different
needs. For example, it might be useful to MX-piggyback deliveries, which requires to store (valid, i.e.,
not-expired) MX records together with recipient domains. Another example is a list of recipients that
wait for a host to be able to receive mail again, i.e., a DB which is keyed on hosts (IP addresses or
names?) and the data is a list of recipients for those hosts.

Normally entries in the incoming queue are moved into the deferred queue only after a delivery attempt,
i.e., via the active queue. However, the active queue itself is not backed up on persistent storage. Hence
an envelope must be either in the incoming queue or in the deferred queue at any given time (unless it
has been completely delivered). Moving an entry into the deferred queue must be done safely, i.e., the
envelope must be safely in the deferred queue before it is removed from the incoming queue. Question:
When do we move the sender data over from the incoming to the deferred queue? Do we do it as soon
as one recipient has been tried or only after all have been tried? Since we are supposed to try delivery as
soon as we have the mail, we probably should move the sender data after we tried all recipients. “Trying”
means here: figure out a DA, check flags/status (whether to try delivery at all, what’s the status of the
system to which the mail should be delivered), if normal delivery: schedule it, otherwise move to the
deferred queue.

The in-memory queues are limited in size. These sizes are specified in the configuration file. It is not
yet clear which form these specifications may have: amount of memory, amount of entries, percentage
of total memory that can be used by sendmail X or specific processes. The specification should include
percentages at which the behavior of the queue manager changes, esp. for the incoming queue. If the
incoming queue becomes almost full the acceptance of messages must be throttled. This can be done
in several stages: just slow down, reduce the number of concurrent incoming connections (just accept
them slower), and in the extreme the SMTP server daemons will reject connections. Similarly the mail
acceptance must be slowed down if the active queue is about to overflow. Even though the queue manager
will normally favor incoming mail over other (e.g., deferred) mail, it must not be possible to starve those
other queues. The size of the active queue does not need to be a direct feedback mechanism to the SMTP
daemon, it is sufficient if this is happening indirectly through the incoming queue (which will fill up if
items can’t be moved fast enough into the active queue). However, this may not be intended, maybe we
want to accept messages for some limited time faster than we can send them.

Sendmail X, May 4, 2005, 11:44 47

It might be nice for the in-memory queues to vary in size during runtime. In high-load situation those
queues may grow up to some maximum, but during lower utilization they should shrink again. Maximum
and minimum sizes should be user-configurable. However, in general the OS (VM system) should solve
the problem for us.

2.4.1.1 Current Selection of Queues and their Names

Here’s the list of queues that are currently used:

One proposal for a set of possible queues is:

• incoming: queue (memory) in which currently incoming envelope data is stored (IQDB), backed up
on disk (IBDB); both together are referred to as INCEDB.

• active: queue (memory) from which deliveries are scheduled (AQ or ACTEDB).

• deferred: queue (disk) in which envelope data is stored which refers to recipients that could have
not been delivered due to problems or queueing (administrative) decisions (DEFEDB). This queue
is also called “main” (or “delayed”) queue. It also holds data for DSNs.

There’s currently no decision about the queue for corrupted entries.

2.4.2 Queue Formats

The incoming queue must be backed up on stable storage to ensure reliability. The most likely imple-
mentation right now is a logfile, in which entries are simply appended since this is the fastest method
to store data on disk. This is similar to a log-structured filesystem and we should take a look at the
appropriate code. However, our requirements are simpler, we don’t need a full filesystem, but only one
file type with limited access methods. There must be a cleanup task that removes entries from the backup
of the incoming queue when they have been taken care of. For maximum I/O throughput, it might be
useful to specify several logfiles on different disks.

The other queues require different formats. The items on hold are only released on request (e.g., for
ETRN). Hence they must be organized in a way that allows easy access per domain (the ETRN argument)
or other criteria, e.g., a hold message for quarantined entries.

The delayed queue contains items that could not be delivered before due to temporary errors. These are
accessed in at least two ways:

1. when a delivery agent is able to instantiate a connection to a destination that was previously
unavailable, then it might be appropriate to send other entries in the queue to this location too.

2. items in the queue must be tried periodically. In this case it should be possible to access the entries
based on certain criteria, of which possibly the most important is “next time to try”.

2.4.2.1 Reference Counting

The queue manager needs to keep a reference count for an envelope to decide when an entry can be
removed. This may become non-trivial in case of aliases (expansion). If the LDA does alias expansion
then one question is whether it injects a new mail (envelope) with a new body. Otherwise reference
counting must take care of this too.

48 Sendmail X, May 4, 2005, 11:44

The MAIL (sender) data, which includes the reference counter, is stored in the deferred queue if necessary,
i.e., as long as there are any recipients left (reference count greater than zero). Hence we must have a
fast way to access the sender data by transaction id. At any time the envelope sender information must
be either in the incoming queue or in the deferred queue.

Problem: mailing lists require to create new envelope sender addresses, i.e., the list owner will be the
sender for those mails. An e-mail can be addressed to several mailing lists and to “normal” recipients,
hence this may require to generate several different mail sender entries. Question: should the reference
counter only be in the original sender entry and the newly created entries have references to that?
Distributing the reference count is complicated. However, this may mean that a mail sender entry stays
around even though all of its (primary) recipients have been taken care of.

It might be necessary to have a garbage collection task: if the system crashes during an update of a
reference counter the value might become incorrect. We must assure that the value is never too small,
because we could remove data that is still needed. If the stored value is bigger than it should be, the
garbage collection task must deal with this (compare fsck for file systems).

2.4.3 Data Flow: Moving Envelopes between Queues

Envelopes received by the SMTP servers are put into the incoming queue and backed up on disk. If
an envelope has been completely received, the data is copied into the active queue unless that queue is
full16. Entries in the active queue are scheduled for delivery. If delivery attempts are done, the results of
those attempts are written to the incoming queue (mark it as delivered) or deferred queue as necessary.
Entries from the deferred queue are copied into the active queue based on their “next time to try” time
stamp.

2.4.3.1 Terminology

It would be nice to define some terms for

• destination host (which hosts are meant? MX records + A records)

• delivery attempt (what exactly is that?)

– address resolution

– telling a DA to try delivery to a certain host

– depending on the result of the previous action either try the next host or record some kind of
success or (temporary) error

• delivery failure:

– address resolution problem

– to a single host

∗ session error
∗ transaction error; various stages of a transaction, compare phases of SMTP transaction

– entire failure (all destinations tried)

This would make it easier to talk about the topics and have a common understanding for readers. Todo:
Check the RFCs and other literature.

16If AQ is full the transaction is currently rejected with a temporary error. This is an area for possible improvements.

Sendmail X, May 4, 2005, 11:44 49

2.4.3.1.1 Delivery Attempt A delivery attempt consists of:

1. resolving the recipient address; this can cause a temporary or a permanent failure which must be
handled properly, e.g., as if actually sending the mail failed in the same way.

2. trying all (or at least several) destination hosts for a recipient. Which recipient destinations are
actually tried depends on the scheduler and the connection caches. Since there might be multiple
destination hosts for a recipient, multiple connection attempts might be made. Depending on the
failure mode the status of a recipient may need to be updated in the active queue temporarily, and
the scheduler determines whether more destination hosts should be tried. Only after all destinations
hosts have been tried (or delivery succeeded or permanently failed) the status in other queues will
be updated accordingly.

2.4.3.2 Data Flow: Queue oriented View

This section explains how data is added to the various queues, what happens with it, and under which
circumstances data is read from a queue if there is no queue into which the data is read, i.e., this is a
consumer oriented view.

1. Into IQDB: data comes into IQDB only from the SMTP servers (via QMGR):

(a) the envelope sender is stored in the incoming queue (IQDB).

(b) the envelope recipients are stored in the incoming queue (IQDB) and IBDB.

(c) the content database information is stored in the incoming queue (IQDB) when the transaction
is closed; this also causes the transaction data to be written to IBDB.

2. Into IBDB: data comes into IBDB only from the SMTP servers (via QMGR):

(a) envelope recipients are stored in IBDB.

(b) when a transaction is closed its data (envelope sender and CDB id) is written to IBDB.

(c) before mail reception is acknowledged the entire transaction data is committed to IBDB (per-
sistent storage), i.e., the appropriate function (for Unix: fsync(2)) is called to make sure the
data is actually safely written to persistent storage (usually on disk).

3. Into AQ: data comes into the active queue from two sources:

(a) data in the incoming queue (IQDB) is copied into the active queue (AQ) when an SMTP server
transaction is closed17,18.

(b) entries are read from the deferred queue (DEFEDB) based on some criteria determined by the
scheduler.

4. From AQ: data in the active queue is taken care of by the scheduler and a cleanup task (for case
4e):

(a) recipient addresses are sent to the address resolver.

17Question: copy or move, i.e., should the data be removed from IQDB as soon as it is in AQ? Answer: copy; the data
in IQDB is still required for the list of open transactions.

18Note: currently the data is copied from IQDB to AQ immediately after the transaction is closed, not when the
transaction data is actually committed to IBDB. This is an area where optimizations are possible, e.g., data is not copied
into AQ if the destination is down. However, currently data can be transferred to DEFEDB only via AQ, see Section 2.4.3.3.

50 Sendmail X, May 4, 2005, 11:44

(b) results from the address resolver are used to update recipients.

(c) delivery transactions consisting of one or more recipients are created based on various criteria
and sent to delivery agents.

(d) delivery status received from delivery agents are used to update the data in the various queues
(see Section 2.4.3.4 for details).

(e) recipient addresses which are waiting too long for a result from AR or DA must be removed
from AQ, they are put into DEFEDB with a temporary error, unless the overall queue return
timeout is exceeded.

5. Into DEFEDB:

(a) data is written into DEFEDB whenever a delivery attempt failed.

(b) data is removed from DEFEDB when a delivery attempt succeeded and the data was in
DEFEDB before.

(c) In case of a restart IBDB is read and transactions which are not closed are added to the main
queue (DEFEDB).

2.4.3.3 Detailled Data Flow: Transaction/Recipient oriented View

This section gives a bit more details about the data flow than the previous section. It does only deal
with data that is stored by QMGR in some queue, it does not specify the complete data flow, i.e., what
happens in the SMTP server or the delivery agents.

1. the envelope sender (MAIL) is stored in the incoming queue (IQDB).

2. the envelope recipients (RCPT) are stored in the incoming queue (IQDB) and in IBDB.

3. When the final dot is received the content database information is stored in the incoming queue
(IQDB), and the transaction data (envelope sender and CDB id) is stored in IBDB. The data is
copied into AQ unless AQ is full in which case a temporary error is returned.

4. before the mail reception is acknowledged the entire transaction data is safely committed to the
backup of the incoming queue on disk (IBDB).

5. recipient addresses in AQ are sent to the address resolver.

6. results from the address resolver are used to update recipients in AQ. Possible results include
(temporary) errors in which case the appropriate actions as explained in Section 2.4.3.4 are taken.

7. delivery transactions consisting of one or more recipients are created based on various criteria and
sent to delivery agents.

8. delivery status received from delivery agents is used to update the data in the various queues (see
Section 2.4.3.4 for details).

9. recipient addresses which are waiting too long for a result from AR or DA must be removed from
AQ, they are put into DEFEDB with a temporary error, unless the overall queue return timeout is
exceeded.

10. data from DEFEDB is used to feed the active queue; entries are read from it based on their “next
time to try” (or whatever criteria the scheduler wants to apply).

Sendmail X, May 4, 2005, 11:44 51

2.4.3.3.1 Incoming Queue: How long to keep data? Question: should we keep entries in the
incoming queue only during delivery attempts, or should we move the envelope data into the deferred
queue while the attempts are going on? If we move the envelopes, we have more space available in the
incoming queue and can accept more mail. However, moving envelopes costs of course performance. In
the “normal” case we don’t need the envelope data in the deferred queue, i.e., if delivery succeeds for all
recipients and no SUCCESS DSNs are requested, we don’t need the envelope data ever in the deferred
queue. Question: do we want a flexible algorithm that moves the envelope data only under certain
conditions? Those conditions could include how much space is free in the incoming queue and how long
an entry is already in the queue. There should be two different modes (selectable by an option):

• an envelope stays in the INCEDB until the first delivery attempt for each recipient has been made,

• an envelope stays in the INCEDB up to some time limit and some maximum filling level of the RSC
has been reached, then it is moved to the DEFEDB (and the data in the active queue is modified
accordingly).

We need the envelope data in the deferred queue, if and only if

• a DSN must be sent, i.e., the conditions for sending a DSN are met (theoretically we could try
to handle that in the INCEDB too, but that seems to be too complicated in the general case, see
Section 2.4.6), or

• a delivery attempt (this includes address resolving) temporarily fails.

If no DSN must be sent and all recipients have been taken care of, the envelope does not need to be moved
into the DEFEDB, and it can be removed from the INCEDB afterwards without causing additional data
moving.

Note: it should be possible to remove recipient and transaction data from IQDB as soon as it has been
transferred to AQ and safely committed to IBDB; at this moment the data is in persistent storage and
it is available to the scheduler, hence the data is not really needed anymore in IQDB. There are some
implementations issues around this19, hence it is not done in the current version, this is something that
should be optimized in a subsequent version.

2.4.3.4 Updating Data in Queues after a Delivery Attempt

When a delivery attempt (see 4d in Section 2.4.3.2) has been made, the recipient must be taken care of
in the appropriate way. Note that a delivery attempt may fail in different stages (see Section 2.4.3.1),
and hence updating the status of a recipient can be done from different parts of QMGR. That is, in all
cases the recipient address is removed from ACTEDB and

1. for a successful delivery attempt the data in the queue from which the recipient has been placed in
ACTEDB must be updated (removed, unless a SUCCESS DSN is requested).

(a) If it is from INCEDB, remove the entry from INCEDB. This involves updating IBDB (and
IQDB if the entry is not removed earlier on).

(b) If the entry is from DEFEDB, update the counters in the transaction context and remove the
recipient entry. When all references to a CDB entry have been removed, then that entry must
be removed too.

192004-04-14: Due to way group commits to IBDB are handled and how entries are marked “done” in IBDB.

52 Sendmail X, May 4, 2005, 11:44

2. for a temporary delivery failure

(a) the recipient address is moved to DEFEDB if it was in INCEDB before. This should be
done as follows: write an entry to DEFEDB, if the transaction isn’t in DEFEDB yet: write
transaction and recipient record. Thereafter update INCEDB. It is possible to update INCEDB
before DEFEDB if the recovery program is made aware of this, i.e., it has to check DEFEDB
whether the data is actually there. However, this is ugly in the case when the recipient has
been delivered later on because then this causes double delivery. Hence the proposed order
should be maintained.

(b) otherwise the status of the recipient address in DEFEDB is updated.

3. for a permanent delivery failure

(a) the recipient address is moved to DEFEDB if it was in INCEDB before (for DSN FAILURE
if requested); see item 2a above.

(b) otherwise the status of the recipient address in DEFEDB is updated (for DSN FAILURE if
requested).

The data is stored in DEFEDB (persistent storage) to avoid retrying a failed delivery, see also
Section 2.4.6.

Notice: it is recommended to perform the update for a delivery attempt in one (DB) transaction to
minimize the amount of I/O and to maintain consistency. Furthermore, the updates to DEFEDB should
be made before updates to INCEDB are made as explained in Section 2.4.1.

Note: this section does not discuss how to deal with a transaction whose recipients are spread out over
INCEDB and DEFEDB. For example, consider a transaction with two recipients, all data is in INCEDB.
A delivery attempt for one recipient causes a temporary failure, the other recipient is not tried yet. Now
the transaction and the failed recipient are written to DEFEDB. However, the recipient counters in the
transaction do not properly reflect the number of recipients in DEFEDB but in both queues together.
The recovery program must be able to deal with that.

2.4.3.5 Reading Entries from Deferred Queue

According to item 10 in Section 2.4.3.3 entries are read from the deferred queue into the active queue
based on their “next time to try” (or whatever criteria the scheduler wants to apply). Instead of reading
through the entire DB — which is on disk and hence expensive disk I/O is involved — each time entries
should be added, an in-memory cache (EDBC) is maintained which contains references to entries in
DEFEDB sorted based on the “next time to try”. Note: it might be interesting to investigate whether
an DEFEDB implementation based on Berkeley DB would make this optimization superfluous because
Berkeley DB maintains a cache anyway. However, it is not clear which data the cache contains, most
likely it is not “next time to try” but only the key (recipient/transaction identifiers).

2.4.3.5.1 Memory Usage Even though each entry in the cache is fairly small (recipient identifier,
next time to try, and some management overhead), it might be impossible to hold all references in
memory because of the size. Here is a simple size estimation: an entry is about 40 bytes, hence 1 million
entries require 40 MB. If a machine actually has 1 million entries in its deferred queue then it has most
likely more than 1 GB RAM. Hence it seems fairly unlikely to exceed the available memory with EDBC.
Nevertheless, the system must be prepared to deal with such a resource shortage. This can be done by

Sendmail X, May 4, 2005, 11:44 53

changing into a different mode in which DEFEDB is regularly scanned and entries are inserted to EDBC
such that older entries will be removed if newer entries are inserted and EDBC is full20.

2.4.3.5.2 Fairness If the MTS is busy it might not be possible to read all entries from DEFEDB
when their next time to try is actually reached because AQ might be full. Hence it is necessary to
establish some fairness between the two producers for AQ: IQDB (SMTP servers) and DEFEDB. A very
simple approach is to reserve a certain amount, e.g., half, for each of the producers. However, that does
not seem to be useful:

1. The normal behavior should be that a mail is delivered directly without touching DEFEDB.

2. A static assignment is inflexible.

A slightly better approach is as follows:

1. Reserve a certain amount (e.g., ten per cent) of AQ for entries from DEFEDB.

2. Make sure that no more than some upper threshold (e.g., seventy per cent) of AQ entries are from
DEFEDB.

That is, reserve only a minimum space in AQ for both producers and let them freely use the rest of the
available space up to their limits. The reserved space for each of them should reflect the expected rate
of data generated between the two producers.

This approach will

1. never completely starve DEFEDB (because some amount is reserved for it),

2. allow DEFEDB to use more of AQ if space is available, and

3. never starve IQDB.

2.4.3.6 Cut-Through Delivery

sendmail 8 provides a delivery mode called interactive in which a mail is delivered before the server
acknowledges the final dot. An enhanced version of this could be implemented in sendmail X, i.e., try
immediate delivery but enforce a timeout after which the final dot is acknowledged. A timeout is necessary
because otherwise clients run into a timeout themselves and resend the mail which will usually result in
double deliveries.

This mode is useful to avoid expensive disk I/O operations; in a simple mode at least the fsync(2) call
can be avoided, in a more complicated mode the message body could be shared directly between SMTP
server and delivery agent to even avoid creation of file on disk (this could be accomplished by using
the buffered file mode from sendmail 8 with large buffers, however, this requires some form of memory
sharing21). Various factors can be used to decide whether to use interactive delivery, e.g., the size of the
mails, the number of recipients and their destinations, e.g., local versus remote, or other information that
the scheduler has about the recipient hosts, e.g., whether they are currently unavailable etc.

Cut-through delivery requires a more complicated protocol between QMGR and SMTP server. In normal
mode the SMTP server calls fsync(2) before giving the information about the mail to QMGR and then

20older and newer refer to “next time to try”, not when entries are added to EDBC.
21System V shared memory, maybe mmap(2), others?

54 Sendmail X, May 4, 2005, 11:44

waits for a reply which in turn is used to inform the SMTP client about the status of the mail, i.e., the
reply to the final dot. For cut-through delivery the SMTP server does not call fsync(2) but informs
QMGR about the mail. Then the following cases can happen:

1. QMGR can return one of the following replies:

(a) accept without fsync(2): the mail has been successfully delivered to all recipients.

(b) accept with fsync(2): the mail has not been successfully delivered to all recipients.

(c) reject

2. QMGR does not reply within the timeout: return a temporary error to the client.

For case 1b the SMTP server needs to send another message to QMGR telling it the result of fsync(2).
If fsync(2) fails, the message must be rejected with a temporary error, however, QMGR may already
have delivered the mail to some recipients, hence causing double deliveries.

2.4.4 Scheduling

Items from the delayed queue need to be read into the active queue based on different criteria, e.g., time
in queue, time since last attempt, precedence, random walk.

The queue manager must establish a fair selection of items in the incoming queue and items in the
delayed queue. This algorithm can be influenced by user settings, which includes simple options (compare
QueueSortOrder in sendmail 8), table driven decisions, e.g., no more than N connections to a given host,
and a priority (see Section 2.4.4.1). A simple way to achieve a fair selection is to establish a ratio (that
can be configured) between the queues from which entries are read into the active queue, e.g., incoming:
5, deferred: 1. Question: do we use a fixed ratio between incoming and deferred queue or do we vary that
ratio according to certain (yet to determine) conditions? These ratios are only honored if the system is
under heavy load, otherwise it will try to get as many entries into the active queue as possible (to keep
the delivery agents busy). However, the scheduler will usually not read entries from the deferred queue
whose next time to try isn’t yet reached, unless there is a specific reason to do so. Such a reason might
be that a connection to the destination site became available, an ETRN command has been given, or
deliver is forced by an admin via a control command. Question: does the ratio refer to the number of
recipients or the number of envelopes?

The QMGR must at least ensure that mail from one envelope to the same destination site is send in one
transaction (unless the number of recipients per message is exceeded). Hence there should be a simple
way to access the recipients of one envelope, maybe the envelope id is a key for the access to the main
queue. See also 2.4.4.4 for further discussion. Additionally MX piggybacking (as in 8.12) should be
implemented to minimize the required number of transactions.

Question: how to schedule deliveries, how to manage the active queue? Scheduling: Deliveries are
scheduled only from the active queue, entries are added to this queue from the incoming queue and from
the deferred queue.

To reduce disk I/O the active queue has two thresholds: the maximum size and a low watermark. Only
if too few entries are in the cache entries are read from the deferred queue. Problem: entries from the
incoming queue should be moved as fast as possible into the active queue. To avoid starvation of deferred
entries a fair selection must be made, but this must be done on a “large” scale to minimize disk I/O. That
is, if the ratio is 2-1 (at least one entry from the deferred queue for every two from the incoming queue),
then it could be that 100 entries are moved from the incoming queue, and then 50 from the deferred
queue. Of course the algorithm must be able to deal with border conditions, e.g., very few incoming

Sendmail X, May 4, 2005, 11:44 55

entries but large deferred queue, or only a few entries trickling in such that the number of entries in the
active queue is always in the range of the low watermark.

Question: where/when do we ask the address resolver for the delivery tuple? That’s probably a config-
uration option. The incoming queue must be able to store addresses in external and in “resolved” form.
See also Section 3.13.6 for possible problems when using the resolved form.

Here’s a list of scheduling options people (may) want (there are certainly many more):

• initial-destination-concurrency, max-destination-concurrency: how many concurrent deliveries to a
site are allowed? This can be further subdivided per site, delivery agent, etc.

• mailinglist-resources: percentage how much scheduling resources can be used by a mailing list
expansion (can it use all available delivery slots?).

• site-resources: percentage how much scheduling resources can be used by a single site (can it use
all available delivery slots?).

• Retry schedule: by default, the time between retries is doubled after each (temporarily) failed
delivery attempt. There are lower and upper limits for the retry time. It must be possible to
specify other retry schedules (see below), which may be selected based on several criteria, most
likely the destination site. postfix: the next time for a delivery attempt is current time plus time
in queue (which is current time minus arrival time). Notice: this will cause an additional delay if
the delivery is not attempted at the next retry time but later on (due to load conditions etc).

• Send big mails only at certain times. Maybe this should be: Temporarily defer delivery of large
email, looking for a low-usage time. However, there might be administrative restrictions.

Question: how to specify such scheduling options and how to do that in an efficient way? It doesn’t make
much sense to evaluate a complicated expression each time the QMGR looks for an item in the deferred
queue to schedule for delivery. For example, if an entry should only be sent at certain times, then this
should be “immediately” recognizable (and the item can be skipped most of the time, similar to entries
on hold).

Remark: qmail-1.03/THOUGHTS [Ber98] contains this paragraph:

Mathematical amusement: The optimal retry schedule is essentially, though not exactly, inde-
pendent of the actual distribution of message delay times. What really matters is how much
cost you assign to retries and to particular increases in latency. qmail’s current quadratic retry
schedule says that an hour-long delay in a day-old message is worth the same as a ten-minute
delay in an hour-old message; this doesn’t seem so unreasonable.

Remark: Exim [Haz01] seems to offer a quite flexible retry time calculcation:

For example, it is possible to specify a rule such as ‘retry every 15 minutes for 2 hours; then
increase the interval between retries by a factor of 1.5 each time until 8 hours have passed;
then retry every 8 hours until 4 days have passed; then give up’. The times are measured
from when the address first failed, so, for example, if a host has been down for two days, new
messages will immediately go on to the 8-hour retry schedule.

Courier-MTA has four variables to specify retries:

56 Sendmail X, May 4, 2005, 11:44

retryalpha, retrybeta, retrygamma, retrymaxdelta

These control files specify the schedule with which Courier tries to deliver each message that
has a temporary, transient, delivery failure. retryalpha and retrygamma contain a time
interval, specified in the same way as queuetime. retrybeta and retrymaxdelta contain small
integral numbers only.

Courier will first make retrybeta delivery attempts, waiting for the time interval specified
by retryalpha between each attempt. Then, Courier waits for the amount of time specified
by retrygamma, then Courier will make another retrybeta delivery attempts, retryalpha
amount of time apart. If still undeliverable, Courier waits retrygamma ∗ 2 amount of time
before another retrybeta delivery attempts, with retryalpha amount of time apart. The next
delay will be retrygamma ∗ 4 amount of time long, the next one retrygamma ∗ 8, and so
on. retrymaxdelta sets the upper limit on the exponential backoff. Eventually Courier will
keep waiting retrygamma ∗ (2retrymaxdelta) amount of time before making retrybeta delivery
attempts retryalpha amount of time apart, until the queuetime interval expires.

The default values are:

• retryalpha - five minutes

• retrybeta - three times

• retrygamma - fifteen minutes

• retrymaxdelta - three

This results in Courier delivering each message according to the following schedule, in minutes:
5, 5, 5, 15, 5, 5, 30, 5, 5, 60, 5, 5, then repeating 120, 5, 5, until the message expires.

2.4.4.1 Two Level Scheduling

There are two levels of scheduling:

1. Putting items from the incoming and the deferred queue into the active queue.

2. Sending items from the active queue to the delivery agents.

We could assign each entry a priority that is dynamically computed. For example, the priority could
incorporate:

• The time for the next delivery; i.e., the “overdue” time, it should have been tried at time X, but
now it is already X+n.

• The number of delivery attempts.

• The time in the queue.

• The number of open connections to the recipient site: 0 should have no influence on the priority, 1
have a positive influence, large values have a negative influence.

• The number of messages delivered to the recipient site since those connections have been opened.

• The message size (negative).

• The total number of recipients (negative).

Sendmail X, May 4, 2005, 11:44 57

• The number of recipients to the same site (positive).

• The precedence.

• A random component.

• Deliver-by time specification.

However, it is questionable whether we can devise a formula that generates the right priority. How do
we have to weight those parameters (linear functions?), and how to combine them (+,−, /, ∗, ...)? It
might be simpler (better) to specify the priority in some logical formula (if-then-else) in combination
with arithmetic. Of course we could use just arithmetic (really?) if we use the right operations. However,
we want to be able to short-cut the computation, e.g., if one parameter specifies that the entry certainly
will not be scheduled now. For example: if time-next-try > now then Not-Now unless connections-
open(recipient-site) > 0.

2.4.4.1.1 Low Volume On system with low mail volume the schedulers will not be busy all the time.
Hence they should sleep for a certain time (in sendmail 8 that’s the -q parameter). However, it must
be possible to wake them up whenever necessary. For example, when a new mail comes in the first level
scheduler should be notified of that event such that is can immediately put that mail into the active
queue if that is possible, i.e., there is enough free space. The sleep time might be a configurable option,
but it should also be possible to just say: wake up at the next retry time, which is the minimum of the
retry times in the deferred queue.

2.4.4.1.2 Next Retry Time The next retry time should not be computed based on the mes-
sage/recipient, but on the destination site (Exim does that). It doesn’t make much sense to contact
a site that is down at random intervals because different messages are addressed to it. Since the status
of a destination site is stored in the connection cache, we can use that to determine the next retry time.
However, we have the usual problem here: a recipient specifies an e-mail address, not the actual host to
contact. The latter is determined by the address resolver, and in general, it’s not a single host, but a
list of hosts. In theory, we could base the retry time on the first host in the list. However, what should
we do if another host in the list has a different next retry time, esp. an earlier one? Should we use the
minimum of all retry times? We would still have to try the hosts in order (as required by the standard),
but since a lower priority host may be reachable, we can deliver the mail to it. Question: under which
circumstance can a host in the list have an earlier retry time? This can only happen if the list changes
and a new host is added to it (because of DNS changes or routing changes). In that case, we could set
the retry time for the new host to the same time as all the other hosts in the list. However, this isn’t
“fair”, it would penalize all mails to that host. So maybe it is best to use the retry time of the first host
in the list as the retry time of a message.

Note: There are benefits to some randomness in the scheduling. For example, if some systematic problem
knocks down a site every 3 hours, taking 15 minutes to restore itself, then delivery attempts should not
accidentally synchronize with the periodic failures. Hence adding some “fuzz” factor might be useful.

2.4.4.1.3 Preemptive Scheduler Notice: it might be useful to have a pre-emptive scheduler. That
is, even if the active queue is full, there might be reasons to remove entries from it and replace them
with higher priority entries from the incoming queue. For example, the active queue may be filled with
a lots of entries from a mailing list and new mail is coming in. If the delivery is slow, then some of
those new entries may replace entries in the active queue that aren’t actually given to a delivery agent.
Theoretically, this could be handled by priorities too.

58 Sendmail X, May 4, 2005, 11:44

2.4.4.2 First Level Scheduling (Global)

Whenever there is sufficient free space (number of entries falls below low watermark), then the first level
scheduler must put some entries from the incoming and the deferred queue into the active queue.

2.4.4.2.1 Scheduling Large Mailing Lists Problem: we have to avoid using up all delivery agents
(all allowed connections) for one big e-mail, e.g., an e-mail to a mailing list with thousands of recipients.
Even if we take the number of recipients into account for the priority calculation, we don’t want to
put all recipients behind other mails with fewer recipients (do we?). This is just another example how
complicated it is to properly calculate the priority. Moreover, expansion of an alias to a large list must
be done such that it doesn’t overflow the incoming queue. That is: where do we put those expanded
addresses? We could schedule some entries immediately and put others into the deferred queue (which
doesn’t have strict size restrictions).

2.4.4.2.2 Immediate Delay Entries from the incoming queue are placed into the active queue in
FIFO order in most cases.

Question: do we put an entry from the incoming queue into the active queue even though we know the
destination is unavailable or do we move it in such a case directly to the deferred queue? We could add
some kind of probability and a time range to the configuration (maybe even per host). Get a random
number between 0 and 100 and check it against the specified probability. If it is lower try the connection
anyway. Another way (combinable?) is to specify a time range (absolute or as percentage) and check
whether the next time to try is within this range.

2.4.4.3 Second Level Scheduling (Micro)

Whenever new entries are added to the active queue, a “micro scheduler” arranges those in an appropriate
order. Question: how to do micro scheduling within the active queue?

1. strict FIFO

2. may move entries for open connections up front. In this case we have to make sure that other
entries don’t “starve”. Can global scheduling prevent this problem? It may, but we probably can’t
rely on that, esp. if that scheduler can be easily tweaked by user configuration.

Question: do we treat the active queue strictly as queue? Probably not because we want to reuse open
connections (as much as allowed by the configuration). So if we have an open connection and we move
an entry “up front” to reuse the connection, how do we avoid to let other entries “lie around” forever
in the queue? We could add a penalty to this connection (priority calculcation), such that after some
usages the priority becomes too bad and hence entries can’t leapfrog others anymore. The problem is
still the same: how to properly calculate the priority without causing instabilities? Courier moves the
oldest entry (from the tail) to the head of the queue in such a case to prevent starvation. Question: does
this really prevent starvation or is it still possible that some entries may stay in the queue forever?

The second level scheduler must be able to preempt entries in the queue. This is required at least for
entries that are supposed to be sent to a destination which turns out to be unavailable after the entry has
been placed in the active queue. This can happen if an “earlier” entry has the same destination and that
delivery attempt fails. Then all entries for the same destination will be removed from active queue. In
such a case, they will be marked as deferred (assuming it was a temporary delivery failure). Notice: this
is complicated due to the possibility of multiple destination sites, so all of them have to be unavailable

Sendmail X, May 4, 2005, 11:44 59

for this to happen. It may also be useful to just remove entries from the active queue based on request
by the first level scheduler. Question: how can this be properly coordinated?

2.4.4.4 Minimizing Number of Transactions

As described in Section 2.4.4 the scheduler should at least ensure that mail from one envelope to the
same destination site is sent in one transaction (unless the number of recipients per message is exceeded).
However, this isn’t as trivial to achieve as it seems on first sight. If MX piggybacking is supposed to
implemented then all addresses of one envelope must be resolved first before any delivery is scheduled.
This may reduce throughput since otherwise delivery attempts can be made as soon as a recipient address
is available. If those recipient addresses would be for different destinations then starting delivery as soon
as possible is more efficient (assuming the system has not yet reached its capacity). If the recipient
addresses are for the same destination then putting them into one transaction will at least reduce the
required bandwidth (and depending on the disk I/O system and its buffer implementation maybe also the
number of disk I/O operations). Recipient coalescing based on the domain parts is easier to implement
since it can be done before addresses are resolved; it still requires walking through the entire recipient list
of course (some optimized access structure, e.g., a tree with sublists, could be implemented). Depending
on when addresses are resolved and where they are stored, MX piggybacking may be as easily to achieve,
i.e., if the resolved addresses are directly available.

2.4.4.5 Cleanup of Active Queue

Entries must not stay in AQ for unlimited time (see Section 2.4.3.2, item 4e) hence some kind of timeout
must be enforced. There are two situations in which timeouts can occur:

1. Waiting for AR result.

2. Waiting for DA result.

Theoretically there is a third timeout: A recipient is ready for scheduling but the (micro) scheduler did
not yet get to it. This should never happen, it indicates a problem with the scheduler.

2.4.4.6 Outgoing Connection Cache

The queue manager keeps a connection cache that records the number of open connections, the last time
of a connection attempt, the status (failure?), etc. For details, see Section 3.4.10.10. Question: if the
retry time for a host isn’t reached, should an incoming message go directly into the deferred queue instead
of being tried? That might be a configuration option. See also 2.4.4.2.2.

2.4.4.7 Multiple Destinations

For SMTP clients, mail might have multiple possible destinations due to the use of MX records. The
basic idea is to provide a metric of hosts that are “nearer” to the final delivery host (where usually
local delivery occurs). A SMTP client must try those hosts in order of their preference “until a delivery
attempt succeeds”22. However, this description is at least misleading, because it seems to imply that

22To provide reliable mail transmission, the SMTP client MUST be able to try (and retry) each of the relevant addresses
in this list in order, until a delivery attempt succeeds. [Kle01], pg 59

60 Sendmail X, May 4, 2005, 11:44

if mail delivery fails other destinations hosts should (MUST) still be tried, which is obviously wrong.
So the question is: when should a SMTP client (or in this case, the QMGR) stop trying other hosts?
One simple reason to stop is of course when delivery succeeded. But what about all the other cases (see
Section 3.8.4.1)? qmail stops trying other hosts as soon as a connection succeeded, which is probably not
a good idea since the SMTP server may greet with a temporary error or cause temporary errors during
a transaction.

2.4.4.8 Data Structures to support Scheduling

The QMGR should maintain the following data structures (“connection caches”, “connection databases”)
to help the scheduler making its decisions:

1. OCC (Open Connection Cache): Currently open (outgoing) connections.

2. DCC (Destination Connection Cache): Previously open (tried) connections.

3. AQRD (AQ Recipients Destination): Destinations of recipients in AQ.

The last structure (3: AQRD) is just one way to access recipients in AQ, in this case via the DA and
the next hop (“destination”). It can be used to access recipients that are to be sent to some destination,
e.g., to reuse an open connection. All recipients that have the same destination are linked together.

OCC (1) keeps track of the currently open connections and how busy they are as well as the current “load”,
i.e., the number of open sessions/transactions per destination. This can be used to implement things like
slow-start (see 2.4.7) and overall connection limits. Note: these limits should not be implemented per
DA, but for the complete MTS. Question: should there be only (global) one open connection cache, not
one each per DA?

DCC (2) keeps track of previously made/tried connections (not those that are currently open), it can be
compared to the hoststatus cache of sendmail 8. This can be used by the scheduler to decide whether
trying to connect to hosts at all, e.g., because they are down for some time already.

All three structures are basically accessed via the same key (DA plus next hop); the structures AQRD
(3) and OCC (1) keep an accurate state, while DCC (2) might be implemented in a way that some
information is lost in order to keep the size reasonable (it is not feasible to keep track of all connections
that have ever been made, nor is it reasonable to keep track of all connections for a certain amount of
time if that interval is too large, see 3.4.10.10 for a proposal).

Question: is it useful to merge AQRD (3) and OCC (1) together because they basically provide two parts
of a bigger picture (and hence merging them avoids having to update and maintain them separately, e.g.,
memory (de-)allocation and lookups are done twice for each update). However, keeping them separate
seems cleaner from a software design standpoint: AQRD is “just” one way to access entry in AQ, while
OCC is an overview of the current state of all delivery agents.

There are (at least) two more access methods that are useful for the scheduler:

1. Recipients which are waiting for the AR to determine their destination (DA, next hop). Those
are not in any AQ Recipient Destination Queue, unless there is a “pseudo” queue for “unknown”
destinations.

2. As explained in Section 2.4.4.5 entries must be removed if they stay too long in AQ.

It might be useful to organize recipients that are waiting for an AR or DA result into a list which
is sorted according to their potential timeout.

Sendmail X, May 4, 2005, 11:44 61

2.4.5 Triggering Deliveries

The administrator should have the chance the trigger a delivery attempt or complete queue runs manually.
For example, if the admin notices that a site or a network connection is up again after a problem, she
should be able to inform the scheduler about this change, see also Section 2.11.1.2.

2.4.6 DSNs

According to RFC 1894 five types of DSNs are possible:

1. “delivered” indicates that the message was successfully delivered to the recipient address specified
by the sender, which includes “delivery” to a mailing list exploder; abbreviation: sDSN (success).

2. “expanded” indicates that the message has been successfully delivered to the recipient address as
specified by the sender, and forwarded by the Reporting-MTA beyond that destination to multiple
additional recipient addresses; abbreviation: eDSN. An action-value of “expanded” differs from
“delivered” in that “expanded” is not a terminal state, i.e., further “failed” or “delayed” notifications
may be provided.

Using the terms “mailing list” and “alias” as defined in RFC 2821 [Kle01], section 3.10.1 and
3.10.2: An action-value of “expanded” is only to be used when the message is delivered to a
multiple-recipient “alias”. An action-value of “expanded” should not be used with a DSN issued
on delivery of a message to a “mailing list”.

3. “relayed” indicates that the message has been relayed or gatewayed into an environment that does
not accept responsibility for generating DSNs upon successful delivery; abbreviation: rDSN.

4. “delayed” indicates that the Reporting MTA has so far been unable to deliver or relay the message,
but it will continue to attempt to do so. Additional notification messages may be issued as the
message is further delayed or successfully delivered, or if delivery attempts are later abandoned;
abbreviation: dDSN. Notice: according to RFC 1891 “delayed” DSN are not required (MAY).

5. “failed” indicates that the message could not be delivered to the recipient; abbreviation: fDSN.
The Reporting MTA has abandoned any attempts to deliver the message to this recipient. This
DSN type is commonly called “bounce”.

The queue manager collects the delivery status informations from the various delivery agents (temporary
and permanent failures). Based on the requested delivery status notifications (delay, failure, success), it
puts this information together and generates a DSN as appropriate. DSNs are added to the appropriate
queue and scheduled for delivery.

Question: how to coalesce DSNs? We don’t want to send a DSN for each (failed) recipient back to the
sender individually. After each recipient has been tried at least once (see also 3.4.10.6) we can send an
initial DSN (if requested) which includes the failed recipients (default setting). Do we need to impose a
time limit after which a DSN should be sent even if not all recipients have been tried yet? Assuming that
our basic queue manager policy causes all recipients to be tried more or less immediately, we probably
don’t need to do this. Recipients would not be tried if the policy says so (hold/quarantine), or if the
destination host is known to be down and the retry time for each hasn’t been reached yet. In these cases
those recipients would be considered “tried” for the purpose of a DSN (they are delayed). After the
basic warning timeout (either local policy or due to deliver-by) a DSN for the delayed recipients is sent if
requested. This still leaves open when to send DSNs for failed recipients during later queue runs. Since
the queue manager doesn’t schedule deliveries per envelope but per recipient, we need to establish some

62 Sendmail X, May 4, 2005, 11:44

policy when to send other DSNs. Todo: take a look at other MTAs (postfix) how they handle this. Note:
RFC 1891, 6.2.8 DSNs describing delivery to multiple recipients: a single DSN may describe attempts to
deliver a message to multiple recipients of that message. Hence the RFC allows to send several DSNs, it
doesn’t require coalescing.

Notice: it is especially annoying to get several DSNs for the same message if the full message is returned
each time. However, it would probably violate the RFCs to return the entire mail only once (which could
be fairly easily accomplished). BTW: the RET parameter only applies to “failed” DSNs, for others only
headers should be returned (RFC 1891, 5.3).

Additional problem: different timeouts for warnings. It is most likely possible to assign different timeouts
for DELAY DSNs to different recipients within a single mail. In that case the algorithm to coalesce
DELAY DSNs will be even more complicated, i.e., it can’t be a simpler counter whether all recipients
have been tried already.

Question: where do we store the data for the DSN? Do we store it in the queue and generate the DSN
body “on the fly” or do we create a body in the CDB? Current vote is for the former.

2.4.6.1 DSN Recipient Types

A MTA must be able to distinguish between different types of recipient addresses:

1. regular local recipients and mailing lists: those addresses can cause delivered, delayed, and failed
DSNs.

2. aliases: those addresses can cause expanded, delayed, and failed DSNs.

3. non local recipients: those addresses can cause relayed, delayed, and failed DSNs.

Note: RFC 1891, 6.2.7.4 explains confidential forwarding addresses which should be somehow imple-
mented in sendmail X.

It doesn’t seem to be easy to maintain this data. First of all, the types are only known after address
expansion. Even then, they may not be complete because a LDA may perform further alias expansion.
Question: must the sum of these counters be the same as the number of original recipients? That is, “all”
we have to do is to classify the original recipients into those three cases and then keep track of them?
Answer: no. DSNs can be requested individually for each recipient. Hence the question should be: must
the sum of these counters be less than or equal the number of original recipients?

The main problem is how to deal with address expansions, i.e., addresses that resolve (via aliases) to
others. RFC 1891 lists the following cases:

• mailing list: considered as final delivery, hence no problem.

• single-recipient alias: should propagate DSN parameters.

• multiple-recipient alias: can be treated in different ways:

1. treat as relaying to system that doesn’t support DSN.

2. propagate DSN parameters to exactly one address. This is for example useful for vacation
aliases, i.e.,

user
"|/usr/bin/vacation user"

Sendmail X, May 4, 2005, 11:44 63

3. propagate ENVID, RET, ORCPT, NOTIFY (without SUCCESS) parameters to all addresses,
if SUCCESS was requested: “expanded” DSN.

2.4.6.2 DSN: Return Body or Headers

If DSNs are implemented properly the sender can determine herself whether she wants the full body or
just the headers of her e-mail returned in a DSN. sendmail 8 has a configuration option to not return the
body of an e-mail in a bounce (to save bandwidth etc). In addition to that, it might be useful to have a
configuration option to return the body only in the first bounce but not in subsequent DSNs (see Section
2.4.6 about the problem to send only one DSN). So at least two options are necessary:

1. return full body [default]

2. return full body on first bounce, headers on subsequent bounces

3. return only headers on all bounces

These options need to be combined with the DSN requests such that the “minimum” is returned, e.g., if
option 2 is selected but the sender requests only headers, then only the headers are sent.

2.4.6.3 DSN: Delayed

Handling a ”delayed” DSN (dDSN) is a bit more complicated than handling ”delivered” cases because
the original mail stays in the queue and will be tried again (usually).

There are the following states for a recipient:

1. did not request dDSN.

2. did request dDSN.

(a) no dDSN generated (yet).

(b) dDSN generated.

i. dDSN not yet delivered.
ii. dDSN delivered.

2.4.7 Load Control

There are two aspects of load control:

1. make sure that the own server doesn’t become overloaded, i.e., deal with high (local) load appro-
priately.

2. do not overload a remote site when sending mail to it.

Some of the measures can be applied to both cases (local/remote load, incoming/outgoing connections).

The queue manager must control local resource usage, by default it should favor mail delivery over
incoming mail. To achieve this, the queue manager needs to keep the state of the entire system or at

64 Sendmail X, May 4, 2005, 11:44

least it must be able to gather the relevant data from the involved sendmail X programs and the OS. This
data must be sufficient to make good decisions how to deal with an overload situation. Local resources
are:

• CPU,

• (virtual) memory,

• disk I/O, and disk space,

• network I/O.

Therefore the system state (resource usage) should include:

• CPU: load averages; the calculation of load average is done differently on different OS. On OpenBSD:
getloadavg() returns the number of processes in the system run queue averaged over various periods
of time. On some Linux versions this number also includes the processes that are waiting for I/O
(which means they are blocked). It is certainly interesting to measure the I/O activity (iostat(8)?)
because that is also an important indication how busy the system is.

• memory usage (including paging/swapping)

• I/O activity: are the I/O channels saturated? Question: how to measure this? iostat(8): transac-
tions per second, KB per transaction, MB per second. netstat(1): statistics.

• disk space: even though this is more resource control than load control, smX must deal with disk
space shortage.

• number of sendmail X processes and their contributions to the load.

This information should be made available via an API such that it can be configured easily according to
local requirements. The API should supply more than just a single number (“load”), but values for the
different resources that are used as listed above. Question: is that list exhaustive?

The queue manager must be able to limit number of messages/resources devoted to a single site. This
applies to incoming connections as well as to outgoing connections. It must also be possible to allow all
the time connections from certain hosts/domains, e.g., localhost for submissions. This can be a fixed
number or a percentage of the total number of connections or the maximum of both.

The queue manager must assure that the delivery agents do not overload a single site. It should have an
adaptive algorithm to use “optimal” number of connections to a single site, these must be within specified
limits (lower/upper bound) for site/overall connections. Question: how can the QMGR determine the
“optimal” number of connections? By measuring the throughput or latency? Will the overhead for
measurements kill the potential gain? Proposal: Check whether the aggregate bandwidth increases with
a new connection, or if it stays flat. If connections are refused: back off.

The queue manager may use a “slow start” algorithm (TCP/IP, postfix) which gradually increases the
number of simultaneous connections to the same site as long as delivery succeeds, and gradually decreases
the number of connections if delivery fails.

Idea (probably not particularly good): use “rate control”: don’t just check how full the INCEDB is, but
also the rate of incoming and “leaving” mails. Problem: how to count those? Possible solution: keep
the numbers over certain intervals (5s), count envelopes (not recipients, deal with envelope splitting).
If the incoming rate is higher than the departure rate and a certain percentage (threshold) is reached:

Sendmail X, May 4, 2005, 11:44 65

slow down mail reception. If the leaving rate is higher than the incoming rate, the threshold (usage of
INCEDB) could be increased. However, since more data is removed than added, the higher threshold
shouldn’t be reached at all. This can only be useful if we have different thresholds, e.g., slow down a
bit, slow down more, stop, and we want to dynamically change them based on the rates of incoming and
outgoing messages.

All parts of sendmail X, esp. the queue manager, must be able to deal with local resource exhaustion,
see also Section 2.15.7.

The queue manager must implement proper policies to ensure that sendmail X is resistant against denial
of service attacks. Even though this can’t be completely achieved (at least not against distributed denial
of service attacks), there are some measure that can be taken. One of those is to impose restrictions on
the number of connections a site can make. This applies not only to the currently open connections, but
also to those over certains time intervals. For this purpose appropriate connection data must be cached,
see Section 3.13.8.

2.4.8 Misc

Todo: structure the following items.

• Question: do we want to allow “hold” per recipient? This seems to be useful and should be fairly
easy to achieve.

• limits for number of recipients per message, per transaction (in/out)?

• limits for transactions per session (in/out)?

• transfer message to same host over just one connection (multiple transactions) or multiple? (con-
figurable).

• VERP23: maybe optional? The queue manager should be designed to allow for this.

2.4.9 Security Considerations

The queue manager does not need any special privileges. It will run as an unprivileged user.

The communication channels between the various modules (esp. between the QMGR and other modules)
must be protected. Even if they are compromised, the worst that is allowed to happen is a local denial of
service attack and the loss of e-mail. Getting write access to the communication channel must not result
in enhanced privileges. It might sound bad enough that compromising the communicaton channels may
cause the loss of e-mail, but consider that an attacker with write access to the mail queue directory may
accomplish the same by just removing queued mail. There is one possible way to protect the commu-
nication even if an attacker can get write access to them: by using cryptography, i.e., an authenticated
and encrypted communication channel (e.g., TLS). However, this is most likely not worth the overhead.
It could be considered if the communication is done over otherwise unsecured channels, e.g., a network.

23Variable Envelope Return Paths, [Ber97]

66 Sendmail X, May 4, 2005, 11:44

2.5 SMTP Server Daemon

There are several alternatives how to implement an SMTP server daemon. However, before we take a
look at those, some initial remarks. We have to distinguish between the process(es) that listen(s) for
incoming connections (on port 25 by default, in the following we will only write “port 25” instead of “all
specified ports”) and those processes that actually deal with an SMTP session. We call the former SMTP
listener and the latter SMTP server, while SMTP server daemon is used for both of them. It might be
that listeners and servers are different processes (passing open file descriptors from the listener to the
server) or the same.

2.5.1 Internet Server Application

Interesting references about the architecture of internet servers are: [Keg01] for WWW server models
and evaluations, [SV96c], [SV96a], and [SV96b] for some comparisons between C, C++, and CORBA for
various server models, and [SGI01] for one particular thread model esp. designed for internet server/client
applications. Papers about support of multi-threading by the kernel and in libraries are [ABLL92],
[NGP02], [Dre02], and [Sol02].

An internet server application (ISA) reads data from a network, performs some actions based on it, and
sends answer(s) back. The interesting case is when the ISA has to serve many connections concurrently.
Each connection requires a certain amount of state. This state consists at least of:

• global data that can be shared among all server instances, most of it is read-only, e.g., configuration
data, some if it is read/write, e.g., number of open connections and other performance related data.
Access to the latter must be synchronized.

• local data relevant for one connection only; this includes data about the connection itself, e.g., file
descriptors, I/O buffers, application state (waiting for command, ...), but also data about the thread
of execution, e.g., registers, stack, PC, which usually is under control of the OS (or a threading
library). It would be nice to minimize the amount of the latter, which can be done by having as
few execution threads as possible.

There is a certain amount of hardware concurrency that must be efficiently used: processors (CPU, I/O),
asynchronously operating devices, e.g., SCSI (send a command, do something else, get result) and network
I/O. There should be one process per CPU assuming the process is runnable all the time (or it invokes a
system call that executes without giving up the CPU for the duration of the call); if the process can block
then more processes are required to keep the CPU busy. We need to have always one thread of execution
that is runnable. Unix provides preemptive, timesliced multitasking, which might not the best scheduling
mechanism for ISA purposes. Assuming that context switches are (more or less) expensive, we want to
minimize them. This can be achived by “cooperative” multitasking, i.e., context switches occur only
when one thread of execution (may) block. Notice: this requires that no thread executes too long such
that other threads may starve. This will be a problem if a thread executes a long (compute-intensive)
code sequence, e.g., generation of an RSA key. Question: how can we avoid this problem? Maybe use
preemptive multitasking, but make the timeslice long enough? As long as each thread only performs a
small amount of work, it is better to let it executes its entire work up to a blocking function to minimize
the context switch overhead. Question: can we influence the scheduling algorithm for threads? POSIX
threads allow for different scheduling algorithms, but most OS implement only one (timesliced, priority
based scheduling).

An ISA should answer I/O requests as fast as possible since that allows clients (which are waiting for
an answer) to proceed. Hence threads that are able to answer a request should have priority. However,

Sendmail X, May 4, 2005, 11:44 67

a thread that performs a long computation must proceed too, otherwise its client may time out. So we
have a “classic” scheduling problem. Question: do we want to get into these low-level problems or leave
it to the OS?

2.5.2 SMTP Server Design Alternatives

The alternatives to implement SMTP server daemons are at least:

1. One process per connection (old sendmail model). This is too slow and too resource intensive
(unless the SMTP server is very small). Context switching (between processes) is fairly expensive.
Each process occupies a kernel structure.

2. One process (at most per CPU) for all connections (event driven), no threads. This only scales
(for a multi-processor system) by starting one process per CPU. However, purely event driven
programming is hard (see Section 3.16.4) and long computations (without preemption) will delay
all other connections within a process. Hence this model is not acceptable in general.

3. Process with pre-forked children: one process listens on all necessary ports (select()), hands over
connection to other process (pool of processes available). Similar problems as in 1, it only avoids
the (per connection) fork()ing overhead.

4. Threads:

(a) One thread per connection. This probably doesn’t scale very well due to restrictions in current
OSs. For example, there might be locking problems, e.g., access to file descriptors (open(),
close()). Even though some OS provide a many-to-one mapping between user threads and
execution engines, that mapping may detoriate to almost 1-1 because the OS creates a new
execution engine if all of them are blocked but there are runnable user threads [SGI01].

(b) Set of worker threads. This allows to balance the number of worker threads versus the number
of tasks to perform and the capabilities of the OS. Problems:

• Asynchronous I/O. On some OSs the appropriate functions (select(), poll()) don’t
scale very well with the number of file descriptors (events) to watch.

• This can be fairly complicated to program if it is done purely event driven (see Section
3.16.4); a potential workaround for this problem is explained in Section 3.20.4.1.

• Many synchronization points have to be build into the program. This can be time-
consuming (runtime and programming time), and it is error prone (deadlocks). On multi-
processor systems inter-processor synchronization can be fairly expensive. It would be
best (but not possible with POSIX threads?) to lock threads down to one processor and
deal with multiple processors by having multiple processes (one per processor).

Disadvantage: threads require very careful programming, the program must never crash, even if
running out of memory or ”fatal” errors in one of the threads (connections). Only that connection
must be aborted and the problem must be logged.

5. Combination of processes and threads (Apache 2): process with pre-forked children which are multi-
threaded (worker model); one process listens on all necessary ports for incoming connections and it
hands over a new connection to another process (pool of processes available).

Advantages: ”crash resistent” (if one thread goes down, it can take down only one process). The
probably most important part of this solution is: it doesn’t bind us to any particular model which
may show deficiencies on a particular OS, configuration, or even in the long run of further OS

68 Sendmail X, May 4, 2005, 11:44

development. We can easily tune the usage of processes and threads based on the OS require-
ments/restrictions. It is the most flexible (and most complicated) model, with which we can get
around limitations in different OSs.

Disadvantages: pretty complicated. Selecting this model shouldn’t be necessary for crash resistence
since we don’t have plugins that could easily kill smtpd, but we use external libraries (Cyrus SASL,
OpenSSL). It requires extra efforts to share data since we have multiple processes.

Todo: we have to figure out which of those models works best. A comparison [RB01] between 4a, 4b,
and one process per connection clearly points to 4b. However, the tests listed in that article are not
really representable for SMTP because no messages have been sent. Moreover, it misses model 5. Even
though there might be some data available about the performance of different models, most of those
probably apply to HTTP servers (Apache) or caches (Squid). These are not really representative for
SMTP because HTTP/1.0 is only one request/one response exchange where the response is often pretty
short. SMTP uses several exchanges (some of which can be pipelined) and often transports larger data.
HTTP/1.1 can be used to keep a connection open (multiple requests and answers) and might be better
comparable in its requirements to SMTP. Question: is there performance data available for this? How
about FTP (larger data transports, but often only one request)?

Notice: slow connections must be taken into account too. Those connections have very little (I/O,
computational) requirements per time slice, but they take up as much context data as fast connections.
It should be tried to minimize any additional data, e.g., process contexts, for these connections. If we for
example use one thread per connection, then slow connections will take up an entire thread context, but
rarely use it. A worker thread model reduces this overhead.

We need some basic prototypes to do comparisons, esp. on different OS to find out whether threading
really achieves high performance (probably on Solaris, less likely on *BSD).

Question: if we choose 5 (current favorite), how do we handle incoming connections? Do we have a single
process listen on port 25 and handing over the socket to another process (3.16.15)? This may create a
bottleneck. Alternative: similar to postfix have multiple processes do a select() on the port. One of
them will get the connection. Possible problem(s):

• Thundering herd: all processes are woken up by the kernel, but only one gets the connection, the
rest an error. We can avoid this problem by passing around a token between the different SMTP
listener processes such that only one of them actually performs an accept() on the socket(s). The
“best” solution to this problem probably depends on the number of processes and the OS.

• How to dynamically create and destroy processes in this model? Remember: they must share access
to the port. This would be done by the MCP.

Question: how much data sharing do we need in SMTPS? We need to know the number of open connec-
tions (overall, per host) and the current resource usage. It might be sufficient to have this only in the
listener process (if we decide to go for only one) or it can be in the queue manager (which implements
general policy and has data about past connections too). Another shared resource is the CDB which may
require shared data (locking). If the transaction and session ids are not generated by the queue manager,
then these require some form of syncronization too. In the simplest form, the process id might be used
to generate unique ids (the MCP may be able to provide ids instead if process ids will not be useful for
this purpose because they may be reused too fast).

Sendmail X, May 4, 2005, 11:44 69

2.5.3 Control Flow

A SMTP session may consist of several SMTP transactions. The SMTP server uses data structures that
closely follow this model, i.e., a session context and a transaction context. A session context contains (a
pointer to) a transaction context, which in turn points back to the session context. The data is stored by
the queue manager. The transaction context “inherits” its environment from the session context. The
session context may be a child of a server daemon context that provides general configuration information.
The session context contains for example information about the sending host (the client) and possibly
active security and authentication layers.

Todo: describe a complete transaction here including the interaction with other components, esp. queue
manager.

The basic control flow of an incoming SMTP connection has already been described in Section 2.1.5.

1. Session: The SMTP server receives an incoming connection attempt and contacts the queue manager
(see Section 2.4) with that information (client IP address; address to host name conversion is done
by the queue manager or address resolver, for this an asynchronous DNS interface is needed). An
ident lookup is performed if requested (configuration option, maybe even per connection). The
queue manager and active milters decide whether to accept or reject the connection. The queue
manager returns a session id, which will be used at least for logging. In the latter case the status of
the server is changed appropriately and most commands are rejected. Further policy decisions can
be made, i.e., which features to offer to the client: allow ETRN, AUTH (mechanisms?), STARTTLS
(certs?), EXPN, VRFY, etc.

2. HELO/EHLO: send the list of features as returned from the queue manager after the connection
has been made. That list of features also includes whether the parameter needs to be checked. If
requested, the parameter is sent to the queue manager.

3. If SMTP commands are used that change the status of a session (e.g., STARTTLS, AUTH), those
are executed and their effects are stored in the session context. The data is also send to the queue
manager and maybe a new list of features is returned. In some cases the SMTP session is started
again, e.g., when encryption is turned on. That may change the available features.

4. Transaction: For each transaction a new envelope is created and the commands are communicated
to the queue manager and the address resolver for validation and information. Other processes
(esp. milters) might be involved too and the commands are either accepted or rejected based on
the feedback from all involved processes.

(a) MAIL: starts a new transaction. The MAIL command is syntactically analyzed, esp. the
address and the extensions, and rejected if the syntax check fails. Then the address is given
to the anti-UBE checks and the active milters, which may cause a rejection. If some of the
extensions are not available or the requested action cannot be taken, the command is rejected
too.
The whole command is passed to the QMGR which stores the relevant data in the incoming
queue. Questions: whole or only relevant parts? Are there irrelevant parts? Do we send the
original text or a decoded version? A decoded version seems better to avoid double work.

(b) RCPT: add another recipient to the list. The RCPT command is syntactically analyzed, esp.
the address and the extensions, and rejected if the syntax check fails. If some of the extensions
are not available or the requested action cannot be taken, the command is rejected too. The
address is given to the anti-UBE checks (esp. anti-relay) and the active milters, which may
cause a rejection. Moreover, if the recipient is supposed to be local, then it is checked via

70 Sendmail X, May 4, 2005, 11:44

the appropriate databases, e.g., mailbox and aliases database. The recipient command is sent
to the queue manager which adds it to the incoming queue for the current transaction. The
queue manager may ask at this point the address resolver to turn the address into an internal
form and to expand aliases.

(c) DATA: start collecting data. This is the latest point at which the CDB must be contacted to
get an identifier and to open a datafile for writing. The server only adds a Received: header
and it counts those headers (“trace” headers) for a basic form of loop prevention. It doesn’t
do any header munging etc. – unless specifically requested – nor does it mess with the body.
Notice: the server must check whether the first line it reads is a header line. If it isn’t, it
must put a blank line after its Received: header as a separator between header and body. If
the first line starts with a white space character (LWSP), then a blank must be inserted too.
This should be covered by the “is a header” check because a header can’t start with LWSP (it
would be folded into the previous line).

(d) final dot: When an e-mail is received, the queue manager and the SMTP server must either
write the necessary information to stable storage or a delivery agent must take over and
deliver the e-mail immediately. The final dot is only acknowledged after either of these actions
successfully completed.

(e) RSET (EHLO/HELO): aborts a transaction, all transaction related data must be cleared and
the queue manager must be informed about this such that it can remove the transaction from
the EDB.

5. QUIT: ends a session.

Other commands (like NOOP, HELP, etc) can be treated fairly simple and are not (yet) described here.

Question: who removes entries from the CDB? Why should it be the SMTP server? The idea from
the original paper was to avoid lockings overhead since the SMTP server is the only one which has
write access to the CDB. Note: if we use multiple SMTP server processes then we may run into locking
issues nevertheless. The QMGR controls the envelope databases which contain the reference counters for
messages. Hence it is the logical place to issue the removal command. However, it’s still not completely
clear which part of sendmail X actually performs the removal.

Misc:

Questions: which storage format should be used? Most likely: network format (CR LF, dot-stuffed).
What about BDAT handling?

2.5.4 Anti-Spam Checks

The SMTP server must provide similar anti-spam checks as sendmail 8 does. However, it must be more
flexible. Currently it is very complicated to change the order in which things are tested. This causes
problems in various situations. For example, before 8.12 it could have been that relaying has been denied
due to temporary failures even though the mail could have gone through. This was due to the fixed order
in which the checks where run and the checks were stopped as soon as an error occurred even if it was
just a temporary error. This has been fixed in 8.12 but it was slightly complicated to do so.

The anti-spam checks belong in the SMTP server. It has all the necessary data, i.e., client connection and
authentication (AUTH and STARTTLS) data, sender and recipient addresses. If the anti-spam checks
are done by an outside module, all these data need to be sent to it. However, anti-spam checks most
likely have to perform map requests, and such calls may block. It might be interesting to “parallelize”
those requests, esp. for DNS based maps, i.e., start several of those requests and collect the data later on.

Sendmail X, May 4, 2005, 11:44 71

This of course makes programming more complicated, it might be considered as an enhancement later
on. We need to define a clean API and then it may be available as library which can be linked into the
SMTPS or the AR or another module.

2.5.5 Valid User Checks

The SMTP server must offer a way to check for valid (local) users (see Section 2.6.6). Otherwise mail to
local addresses will be rejected only during local delivery and hence a bounce must be generated which
causes problems due to forged sender addresses, i.e., they result in double bounces and may clog up the
MTS.

2.5.6 Address Rewriting

See also Section 2.6.4.

2.5.6.1 Envelope Address Rewriting

There must be an option to rewrite envelope addresses. This should be separately configurable for sender
and recipient addresses.

2.5.6.2 Header Address Rewriting

If sendmail acts as a gateway, it may rewrite addresses in the headers. This can be done by contacting
an address rewrite engine. Question: should this be just another mode in which the address resolver can
operate?

Question: what is the best way to specify when address rewriting should be used? It might be useful to
do this based on the connection information, i.e., when sendmail acts as a gateway between the internal
network and the internet.

It would be nice to implement the address rewriting as just another file type. In this case the SMTP
servers could just open a file and output the data (message header) to that file. This file type is a layer
on top of the CDB file type. The file operations are in this case stateful (similar to those for TLS). As
soon as the body is reached, no more interference occurs. Using this approach makes the SMTP server
simpler since it doesn’t have to deal with the mail content itself.

It must be specifyable to which headers address rewriting is applied. There are be two different classes
of header addresses: sender and recipient. These should relate to two different configuration options.

2.5.7 Security Considerations

The SMTP server must bind to port 25, which can be done by the supervisor before the server is actually
started provided the file descriptor can be transferred to the SMTP server. sendmail 8 closes the socket
if the system becomes overloaded which requires it to be reopened later on, which in turn requires root
privileges again.

The SMTP server may need access to an authentication database which contains secret information (e.g.,
passwords). In most systems access to this information is restricted to the root user. To minimize the

72 Sendmail X, May 4, 2005, 11:44

exposure of the root account, access to this data should be done via daemons which are contacted via
protected communication means, e.g., local socket, message queues.

In some cases it might be sufficient to make secret information only available to the user id under which
the SMTP server is running, e.g., the secret key for a TLS certificate. This is esp. true if the information
is only needed by the SMTP server and not shared with other programs. An example for the latter might
be “sasldb” for AUTH as used by Cyrus SASL which may be shared with an IMAP server.

2.6 Address Resolver

The address resolver (AR) has at least two tasks:

1. determine the delivery information for a recipient address; in sendmail 8/postfix: the mailer triple
consisting of delivery agent, next hop, and recipient address in a form suitable for delivery.

2. rewrite an address into an appropriate (canonical) form.

Hence the AR is not just for address resolving but also address rewriting. Other tasks might include
anti-spam checks. Question: should the two main tasks (rewriting and resolving) be strictly separated?

Question: what kind of interfaces should the address resolver provide? Does it take addresses in external
(unparsed) form and offer various modes, e.g., conversion into internal (tokenized) form, syntax check,
anti-spam checks, return of a tuple containing delivery agent, host, address and optionally localpart and
extension?

Question: who communicates with the AR? The amount of data the AR has to return might be rather
large, at least if it is used to expand aliases (see Section 2.6.7). Using IPC for that could cause a
significant slowdown compared to intra-process communication. So maybe the AR should be a library
that is linked into the queue manager? Possible problems: other programs need easy access to the AR;
security problems since AR and QMGR run with the same privileges in that case? Moreover, the AR
certainly performs blocking calls which probably should not be in the QMGR. See also Section 3.6.3.4.

2.6.1 Address Resolver Operation

Usually the address resolver determines the next hop (mailer triple in sendmail 8) solely based on the
envelope and connection information and the configuration. However, it might be useful to take also
headers or even the mail body into account. Question: should this be a standard functionality of the
AR or should this be only achievable via milters (see Section 2.10) or should this not be available at all?
Decision: make this functionality only available via milters, maybe not even at all. It might be sufficient
to “quarantine” mails (even individual recipients), or reject them as explained in Section 2.10.

2.6.2 Generic Comment about Map Lookups

sendmail 8 uses a two stage approach for most address lookups:

1. Check whether the domain part is in some class (see also Section 4.3.3).

2. If that is the case, then lookup the address (or parts thereof) in some map.

Sendmail X, May 4, 2005, 11:44 73

This approach has the advantages that it can avoid map lookups – which may be expensive (depending
on the kind of maps) and in most case several variations are checked – if the entry is not in a class. It has
the disadvantages that the class data and the map data must be kept in sync, e.g., it is not sufficient to
simply add some entries to a map, the domain part(s) must be added to the corresponding class first24.

2.6.3 Mail Routing

sendmail 8 provides several facilities for mail routing (besides ruleset hacking):

• virtusertable (ruleset 0): changes envelope address. The changed address is used for delivery
decisions.

• mailertable (ruleset 0): doesn’t change address, just for re-routing.

• SMART-HOST (ruleset 0), MAIL-HUB (ruleset 5), etc: apply in certain situations, may change
domain part.

2.6.4 Address Rewriting

• masquerading (applies after routing): changes domain part.

• canonical address mapping (applies after routing): applies to entire address.

• virtusertable (applies before routing): can change entire address, also affects mail routing.

2.6.5 Proposal for Routing and Rewriting

As can be seen from the previous sections, there are operations that solely affect mail routing and there
are operations that solely affect address rewriting. However, some operations affect both, because address
rewriting is done before mail routing. Hence the order of operations is important. If address rewriting is
performed before mail routing, then the latter is affected. If address rewriting is done after mail routing,
then it applies only to the address part of the resolved address (maybe it shouldn’t be called resolved
address since it is more than an address).

Proposal: provide several operations (rewriting, routing) and let the user specify which operations to
apply to which type of addresses and the order in which this happens.

Operations can be:

• Rewrite addresses to standard form, more or less the same as ruleset 3 (or Canonify).

• Canonical address mapping, applies to full address; called (misleadingly) genericstable in sendmail
8.

• Hostname masquerading: applies only to domain part.

• Virtual address mapping: applies to full address, can be applied recursively. Maybe it is useful to
specify an upper limit for the number of recursions.

24which in the case of sendmail 8 even requires a restart of the daemon.

74 Sendmail X, May 4, 2005, 11:44

• Mailer selection. For most general operation this should apply to the full address. Special mailers
are: error, maybe others like hold, quarantine? The functionality of the latter could also be achieved
by special error codes in the range from 6xy to 9xy.

It might be useful for routing operations to not modify the actual address, i.e., if user@domain is spec-
ified, it can be redirected to some other host with the original address or with some new address, e.g.,
user@host.domain.

Some operations – like masquerading – only modify the address without affecting routing.

So for a clear separation it might be useful to provide two strictly separated set of operations for routing
and rewriting. However, in many cases both effects (routing and rewriting) are required together.

Address types are: envelope and header addresses, recipient and sender addresses (others), so there are
(at least) four combination.

envelope-sender-handling { canonify }

envelope-recipient-handling { canonify, virtual, mailertable }

Question: is this sufficient?

2.6.6 Valid Recipients

It must be possible to specify valid recipients via some mechanism. In most cases this applies to local
delivery, but there is also a requirement to apply recipient checks to other domains, e.g., those for which
the system allows relaying.

2.6.6.1 Valid Local Recipients

Note that local recipients can often only be found in maps that do not specify a domain part, hence the
local domains are separately specified. Question: is it sufficient if (unqualified) local recipients are valid
for every local domain or is it necessary to have for each local domain a map which specifies the valid
recipients? For example, for domain A check map M(A), for domain B check map M(B), etc. Moreover,
the domain class would specify whether the corresponding map contains qualified or unqualified addresses.
Other attributes might be: preserve case for local part, allow +detail handling, etc.

Configuration example:

local-addresses {
domains = { list of domains };
map { type=hash, name=aliases, flags={rfc2821}}
map { type=passwd, name=/etc/passwd, flags={local-parts}}

}

2.6.6.2 Valid Remote Recipients

Valid remote recipients can be specified via entries in an access map to allow relaying to specific addresses,
e.g.,

To:user@remote.domain RELAY

Sendmail X, May 4, 2005, 11:44 75

If not all valid recipient are known for a domain for which the MTA acts as backup MX server, then an
entry of the form:

To:@remote.domain error:451 Please try main MX

should be used.

2.6.7 Aliases

There are different types of aliases: those which expand to addresses and those which expand to files
or programs. Only the former can be handled by the address resolver, the latter must be handled by
the local delivery agent for security reasons. Note: Courier-MTA also allows only aliases that expand to
e-mail addresses, postfix handles aliases in the LDA. If alias expansion is handled by the LDA then an
extra round trip is added to mail delivery. Hence it might be useful to have two different types of alias
files according to the categorization above.

Problem: if the SMTP server is supposed to reject unknown local addresses during the RCPT stage, then
we need a map that tells us which local addresses are valid. There are two different kinds: real users
and aliases. The former can be looked up via some mailbox database (generalization of getpwnam()),
the latter in the aliases database. However, if we have two different kinds of alias files then we don’t
have all necessary information unless the address resolver has access to both files. This might be the best
solution: the address resolver just returns whether the address is valid. The expansion of non-address
aliases happens later on.

The address resolver expands address aliases when requested by the queue manager. It provides also an
owner address for mailing lists if available. This must be used by the queue manager when scheduling
deliveries for those expanded addresses to change the envelope sender address.

The queue manager changes the envelope sender for mailing list expansions during delivery. RFC 2821
makes a distinction between alias (3.10.1) and list (3.10.2). Only in the latter case the enveloper sender is
replaced by the owner of the mailing list. Whether an address is just an alias or a list is a local decision.
sendmail 8 uses owner-address to recognize lists.

Question: what to do about delivery to files or programs? For security reasons, these should never end up
in the queue (otherwise someone could manipulate a queue file and cause problems; sendmail would have
to trust the security of the queue file, which is a bad idea). In postfix aliases expansion is done by the
local delivery agent to avoid this security problem. It introduces other problems because no checkpointing
will be done for those deliveries (remember: these destinations – they are not addresses – never show up
in queue files).

Notice: alias expansion can result in huge lists (large number of recipients). If we want to suppress
duplicates, we need to expand the whole list in memory (as sendmail 8 does now). This may cause
problem (memory usage). Since we can’t act the same as older sendmail versions do (crash if running
out of memory), we need to restrict the memory usage and we need to use a mechanism that allows us to
expand the alias piecewise. One such algorithm is to open a DB (e.g., Berkeley DB; proposed by Murray)
on disk and add the addresses to it. This will also detect duplicates if the addresses are used as keys. To
avoid double delivery, expansion should be done in the local delivery agent and it must mark mails with
a Delivered-To: header as postfix [Ven98] and qmail do. Should attempted double delivery (delivery to
a recipient that is already listed as Delivered-To:) in this case cause a DSN? Question: is it ok to list
all those Delivered-To: headers in an email? Does this cause an information leak? Question: is ok to
use Delivered-To: at all? Is this sanctioned by some RFC? Question: do we only do one level expansion

76 Sendmail X, May 4, 2005, 11:44

per alias lookup? This minimizes the problem about “exploding” lists, but it may have a significant
performance impact (n deliveries for n-level expansion).

Question: should there be special aliases, e.g., ERROR, DEFER, similar to access map, that cause
(temporary) delivery errors, or can those be handled by the access map?

2.6.7.1 Forward

Question: Who does .forward expansion?

1. Address resolver: it does not (should not) run as root, hence the .forward must be group or world
readable. If group readable: users must be belong to that group to do a chgrp.

2. Delivery agent: a local delivery agent usually needs to run with the privileges of the recipient (started
by root, setreuid(rcpt-id)). Hence it would be the perfect candidate to access .forward files.
However, this requires a reinjection of the mail into the system. Can we do this via a simple interface
to the queue manager, e.g., some redirect feature? It might be similar (but simpler) to the address
resolver interface, i.e., it doesn’t return structured information. SMTP allows for an error code to
indicate that an address has changed: 551 User not local; please try <new@address>. This
could be used for LMTP too and thanks to continuation lines a whole list of addresses can be
returned:

551-try <new@address1>
551-try <new@address2>
551-try <new@address3>
551 try <new@address4>

Notice: whether a .forward file is in the home directory of a user, or whether it’s in a central directory,
or whether it’s in a DB doesn’t matter much for the design of sendmail X. Even less important is how
users can edit their .forward files. sendmail X.0 will certainly not contain any program that allows users
to authenticate and remotely edit their .forward file that is stored on some central server. Such a task is
beyond the scope of the sendmail X design, and should be solved (in general) by some utilities that adhere
to local conventions. Those utilities can be timsieved, scp, digitally signed mails to a script, updates via
HTTP, etc.

2.6.7.2 Other Approaches to Aliasing?

How about the qmail approach to aliasing? Everything is just handled via one mechanism: HOME(user)/.alias[-
extension]. System aliases are in HOME(aliases)/.alias[-extension]. This results in lots of file I/O which
probably should be avoided.

Of course this wouldn’t be flexible enough for sendmail, it must have the possibility to specify aliases via
other means, e.g., maps. It might be better to put everything into maps instead of files spread out over
the filesystem. In that case a program could be provided that allows a user to edit her/his own alias
entry. However, such a program is certainly security critical, hence it may add a lot of work to implement
properly; compare the passwd(1) command.

Sendmail X, May 4, 2005, 11:44 77

2.6.8 Expansion to Multiple Addresses

There have been requests to have other mechanisms than just aliases/.forward to expand an address to
multiple recipients. We should consider making the AR API flexible enough to allow for this. However,
there is (at least) one problem: the inheritance of ESMTP attributes, e.g., DSN parameters (see also
Section 2.4.6). There are rules in RFC 1894 [Moo96a] which explain how to pass DSN requests for mailing
lists and aliases. Hence for DSN parameters the rules for aliases should probably apply.

2.6.9 Virtual Hosting

It would be nice to have per-user virtual hosting. This can relieve the admin from some work. Todo:
Compare what other MTAs offer and at least make sure the design doesn’t preclude this even though it
won’t be in sendmail X.0. Is contrib/buildvirtuser good enough?

qmail allows to delegate virtual hosts to users via an entry in a configuration file, e.g., virthost.domain:
user. Mail to address@virthost.domain goes to user-address. To keep the virtual domain use virthost.domain:
user-virthost.domain. address@virthost.domain goes to user-virthost.domain-address then. Problem: lots
of little files instead of a table.

2.6.10 Fallback

FallbackMXHost can be used in sendmail 8 to specify a host which is used in case delivery to other hosts
fails (applies only to mailers for which MX expansion of the destination host is performed). It might be
useful to make this more flexible:

• specify also a mailer to use; this may make the QMGR significantly more complicated, see also
Section 3.6.3.1.

• specify under which circumstances which fallback host should be used.

The advantages/disadvantages of these proposals are not yet clear.

In theory, we could use the the second proposal to have generic bounce and defer mailers. That is, if mail
delivery fails with a permanent error, the default “fallback” will be a bounce mailer, if mail delivery fails
with a temporary error, the “fallback” will be a defer mailer. This would allow maximum flexibility, but
the impact on the QMGR (which has to deal with all of this) is not clear.

2.6.11 Security Considerations

The address resolver should run without any privileges. It needs access to user information databases
(mailbox database), but it does not need access to any restricted information, e.g., passwords or authen-
tication data.

2.7 Initial Mail Submission

Initial mail submission poses interesting problems. There are several ways to submit e-mail all of which
have different advantages and disadvantages. In the following section we briefly list some approaches.

78 Sendmail X, May 4, 2005, 11:44

But first we need to state our requirements (in addition to the general sendmail X requirements that
have been given in Chapter 1).

• Accountability: it must be possible to identify a user who submitted an e-mail, at least on OS
which have a concept of different users and require them to authenticate themselves before using
the system.

• Standard conformance: The mail submission program or some subsequent cleanup process must
ensure that an e-mail conforms to the appropriate standard before it is sent to its destination(s).
Notice: this might be achieved by submitting e-mail to the MSA which is supposed to do cleanup
anyway.

2.7.1 Initial Mail Submission Alternatives

1. Use only SMTP

• +: no security problems

• -: must have running SMTP daemon

• -: error handling: mail back errors? → more complex software

2. Queue always

• +: simple program

• -: slow, requires ”fast” queue runner or sending a notification to it (new mail in queue)

• -: possible security problems

3. Try SMTP, queue if fails

• +: fast (usually)

• -: possible security problem if queued

4. How about a different delivery mechanism?

Don’t use SMTP (because it’s complicated and may reject mail), but SMSP (simple mail submission
protocol), submission via socket. Possible problem: how to identify other side? Always require
authentication (SMTP AUTH)? Way too complicated. It’s in general not possible to get the uid of
the sender side, even for local (Unix socket) connections.

At the MotM (2002-08-13) option 3 was clearly favored.

See also [Ber] for more information about the problem of secure interprocess communication (for Unix).

2.7.1.1 How to use queue directory?

1. World writable directory

(a) flat directory

• +: easy
• -: how to avoid DoS attacks (see postfix)?

Sendmail X, May 4, 2005, 11:44 79

(b) structured directory with subdirectories for each user

• +: secure
• -: may become large, hard to maintain

Does this work? The files should be not world writable, so there must be some common group.
Since it is not practical to have all users in the same group (and making sure that that group
is used when a queue file is written), this may not work after all. Run a daemon as root, notify
it of new entries: cd queuedirectory, set*uid to owner of queuedirectory, run the entry.

2. Group writable directory

• +: ”easy” to handle.
• -: set-group-id program: security problem

2.7.1.2 Misc

Possible pitfalls: chown on some systems possible for non-root!

Notice: in the first version we may be able to reuse the sendmail 8 MSP. This gives us a complete MHS
without coding every part.

2.7.2 Security Considerations

Since the initial mail submission program is invoked by users, it must be careful about its input. The usual
measures about buffer overflows, untrusting data, parsing user input, etc. apply esp. to this program. See
the Section 2.14 for some information.

Todo: Depending on the model selected above describe the possible security problems in more detail.

2.8 Mail Delivery Agents

There are several types of mail delivery agents in sendmail X similar to sendmail 8. One of them acts
as SMTP client which is treated separately in Section 2.9. Another important one is the local delivery
agent treated in the Section 2.8.3.

Question: does a DA (esp. SMTP client) check whether a connection is “acceptable”? Compare sendmail
8: TLS Srv, TLS RCPT. It could also be done by the QMGR. The DA has the TLS information, it
would need to send that data to the QMGR if the latter should perform the check. That might make
it simpler for the QMGR to decide whether to reuse a connection (see also Section 3.4.10.2; maybe the
QMGR doesn’t need this additional restriction for reuse). However, if it is a new connection it is simpler
(faster) to perform that check in the DA.

2.8.1 Delivery Agent Modules

Idea: instead of having a fixed set of delivery agents and an address resolver that “knows” about all
of them, maybe a more modular approach should be taken. Similar to Exim [Haz01] and Courier-MTA
[Var01] delivery agents would be provided as modules which provide their own address rewriting functions.
These are called in some specified order and the first which returns that it can handle the address will
be selected for delivery.

80 Sendmail X, May 4, 2005, 11:44

sendmail 8 uses a centralized approach: all delivery agents must be specified in the .cf file and the address
rewriting must select the appropriate delivery agent.

sendmail X must provide a simple way to add custom delivery agents and to select them. It seems best
to hook them into the address resolver, that’s the module which selects a delivery agent.

2.8.2 Specifying Delivery Agents

There must be a simple way to specify different delivery agents, i.e., their behavior and their features
(see Section 3.8.2 for details). This not refers to local delivery agents (2.8.3) and SMTP clients (2.9), but
also to variants of those.

In addition to specifying behavior, actual instances must be described, i.e., the number of processes and
threads that are (or can be) started and are available. These two descriptions are orthogonal, i.e., they
can be combined in almost any way. The configuration must reflect this, e.g., by having to (syntactical
separate) structures that describe the two specifications. For practical reasons, the following approach
might be feasible:

1. Declare the behavior and features of a delivery class.

2. Define actual delivery agents (instances) that implement delivery classes.

Note: sendmail 8 only specified delivery classes (called mailers), it does not have the need for delivery
instances because it is a monolithic program that implements the mailers itself or invokes them as ex-
ternal programs without restrictions. In sendmail X certain restrictions are imposed, i.e., the number of
processes that can run as delivery agents or the number of threads are in general limited. Even though
these limits might be arbitrarily high, they must be specified.

Example:

delivery-class smtp { port = 25; protocol = esmtp; }
delivery-class msaclient { port = 587; protocol = esmtp; }
delivery-class lmtp { socket = lmtp.sock; protocol = lmtp; }
delivery-agent mailer1 { delivery-classes = { esmtp, lmtp };

max_processes = 4; max_threads = 255; }
delivery-agent mailer2 { delivery-classes = { msaclient };

max_processes = 1; max_threads = 16; }
delivery-agent mailer3 { delivery-classes = { esmtp };

max_processes = 2; max_threads = 100; }

Notes:

• instead of using delivery-agent the actual name of the implemented module, e.g., smtpc, will be
used in a configuration file so the module can find its configuration section.

• The example is rather contrived: all listed DAs can implement all delivery classes, the restrictions
are arbitrary and make further algorithms (and implementations) more complicated.

2.8.3 Local Delivery Agent

A local delivery agent usually needs to change its user id to that of the recipient (depending on the local
mail store; this is the common situation in many Unix versions). Since sendmail X must not have any

Sendmail X, May 4, 2005, 11:44 81

set-user-id root program, a daemon is the appropriate answer to this problem (started by the supervisor,
see Section 2.3).

Alternatively, a group-writable mailstore can be used as it is done in most System V based Unix systems.
A unique group id must be chosen which is only used by the local delivery agent. It must not be shared
with MUAs as it is done in some OSs. There is at least one problem with this approach: a user mailbox
must exist before the first delivery can be performed. That requires that the mailbox is created when
the user account is created and no MUA must remove the mailbox when it is empty. There could be a
helper program that creates an empty mailbox for a user which however must run as root and hence will
have security implications.

The local delivery agent in sendmail X will be the equivalent of mail.local from sendmail 8. It runs
as a daemon and speaks LMTP. By default, it uses root privileges and changes its user id to that of a
recipient before writing to a mailbox.

There might be other local delivery agents which use the content database access API to maximize
performance, e.g., immediate delivery while the sender is waiting for confirmation to the final dot of an
SMTP session.

sendmail X.0 will use a normal SMTP client – which is capable of speaking also LMTP – as an interface
between mail.local and the queue manager. That program implements the general DA API on which
the queue manager relies. The API is described in Section 3.8.4. Later versions may integrate the API
into mail.local.

If the LDA also takes care of alias (and .forward) expansion (see Section 2.6.7.1), then sendmail X must
provide a stub LDA that interfaces with custom LDAs. The stub LDA must provide the interface to the
QMGR and the ability to perform .forward expansion. Its interface to the custom LDAs should be via
LMTP in a first approach.

The interface to the local delivery agents must be able to provide the full address as well as just the
local part (plus extensions) in all required variations. There are currently some problems with LDAs that
require the full address instead of just the local part which must be solved in sendmail X. Todo: explain
problems and solution(s).

2.8.4 Security Considerations

Mail delivery agents may require special privileges as explained above.

For obvious security reasons, the LDA will not deliver mail to a mailbox owned by root. There must be
an alias (or some other method) that redirects mail to another account. The LDA should also not read
files which require root privileges.

2.9 SMTP Client

The SMTP client is one of the mail delivery agents (see Section 2.8).

Todo: describe functionality.

Similar to SMTPS there are several architectures possible, e.g., simple (preforked) processes, multi-
threaded, event-driven, or using state-threads. We need to write similar prototypes to figure out the best
way to implement the SMTP clients. It isn’t clear yet whether it should be the same model as SMTPS.
However, it might be best to use the same model to minimize programming effort.

82 Sendmail X, May 4, 2005, 11:44

2.9.1 Control Flow

There are basically two different situations for a SMTPC: open a new connection (new session) or reuse
an existing connection (new transaction).

New session:

1. The SMTP client receives a connection request from the QMGR (see Section 2.4) containing the re-
quired information, esp. the server address and the connection requirements. The connectiond data
may include “MUST” and “SHOULD” options, e.g., try AUTH if available, must use encryption.
If the connection attempt fails, inform QMGR.

2. send EHLO (or HELO), read list of features as returned from the server. Check whether required
features are supported; if not, inform QMGR. The QMGR may decide to use the connection for
something else (unlikely), otherwise the connection will be closed.

3. If SMTP commands are to be used that change the status of a session (e.g., STARTTLS, AUTH),
those are executed and their effects are stored in the session context. The QMGR is informed if
such a command fails. In some cases the SMTP session is started again, e.g., when encryption is
turned on.

4. To end a session (on request of the QMGR) send QUIT.

New transaction:

1. For each transaction the envelope information and the identifier for the CDB is received from the
QMGR. The SMTP client sends MAIL, RCPT, and DATA as allowed by the SMTP server (one
chunk if PIPELINING is allowed, maybe up to the TCP buffer size?) and reads the replies. If a
command fails, the QMGR is informed about the problem. Depending on which commands fails
the entire transaction is aborted, i.e., if MAIL or DATA or all RCPT fail.

2. If the transaction is done, the QMGR is informed about the status returned by the server in response
to the final dot.

3. The SMTPC sends RSET as a keep-alive check (configurable by the QMGR).

It might be useful if the data from the QMGR includes:

• timeouts after which RSET or QUIT should be used.

• timeouts for individual commands (waiting for connection open, replies to SMTP commands).

• limits on the number of recipients per transaction such that the SMTPC itselfs breaks an envelope
into several transactions.

2.9.2 Security Considerations

The SMTP client will run without root privileges. It needs only access to the body of an e-mail that it
is supposed to deliver. However, it may need access to authentication data, e.g., for STARTTLS: a client
certificate (can be readable by everyone) and a corresponding key (must be secured), for AUTH it needs
access to a pass phrase (for most mechanisms) which also must be secured25. For these reasons it seems
appropriate that an SMTP client uses a different user id than other sendmail X programs, and achieves
access to shared data (mail body, interprocess communication) via group rights.

25Maybe that data comes from the QMGR?

Sendmail X, May 4, 2005, 11:44 83

2.10 Milter

The first version of sendmail X will not support the milter API in the same way as sendmail 8 does. Any
functions that allow for modifications of a mail will not be implemented. A basic milter version that
supports policy decisions should be supported, however. This is necessary to implement local anti-spam
features etc, especially since there is no easy extension via rulesets as in sendmail 8.

2.10.1 Possible Enhancements

The Milter API should be extended in sendmail X, even though maybe not in the first version. However,
sendmail X must allow for the changes proposed here.

1. Allow milter to return a per-recipient information at the end of a transmission. This information can
include rejection of recipients, rerouting to other mailers/destinations, and quarantine information.

2. Allow milter to specify ESMTP options for new recipients, e.g., DSN parameters.

Notice: if a milter is allowed to change recipient information (1) then the sendmail X architecture must
allow for this. The architecture could be simpler if the address resolver solely depends on envelope
information and the configuration. If it depends also on the mail content, then the address resolver must
be called later during the mail transmission. This also defeats “immediate” delivery, i.e., delivery to the
next hop while the mail is being received. The additional functionality will most likely be a requirement
(too many people want to muck around with mail transmission). It would be nice to allow for both, i.e.,
mail routing solely based on envelope data, and mail routing based on all data (including mail content).
There should be a configuration options which allows the MTA to speed up mail routing by selecting the
first option.

2.10.2 More Ideas for Enhancements

Currently a milter can only return “continue”, “accept”, “temporary failure”, “permanent failure”, and
“discard”. This is less than the actions possible via access map. It might be an interesting idea to give
a milter those capabilities, e.g., allow relaying or declaring a recipient as spam friend.

Question: how should access map and a policy milter interact? In sendmail 8 rejected commands are not
sent to a milter at all. However, if a policy milter can return more than those few replies the interaction
between access map and policy milter becomes more complicated, especially if they are conflicting. See
Section 3.5.3 for further discussion.

A milter might not need the entire mail body to decide whether the mail should be rejected, hence it
could be useful to have a milter specify a size limit after which the rest of the body will not be sent to
the milter anymore. Note: this might not work well if the mail is in MIME format and contains multiple
parts where only a later part contains something that should be rejected.

2.10.3 Security Considerations

Milters should run as a normal (unprivileged) user, but without any access to the sendmail X configura-
tion/data files. The communication between the MTA and the milters must occur via protected means
to prevent bogus milters to interfere with the operation of the MTA.

84 Sendmail X, May 4, 2005, 11:44

2.11 Miscellaneous Programs

2.11.1 Access to the Queue Manager

2.11.1.1 Show Mail Queue

A program (mailq) should be available to show the content of the mail queue(s). Various options control
the output format and the kind of data shown.

2.11.1.2 Force Queue Run

It might be useful to ask the queue manager to schedule certain entries for immediate (“as soon as
possible”) delivery. This will also be necessary for the implementation of ETRN.

2.11.1.3 Mailstats

Some statistics need to be available. At least similar to mailstats in sendmail 8 and the data from the
control socket. Data for SNMP should be made available. Maybe the rest is gathered from the logfile
unless it can be provided in some other fashion. For example, it is probably not very useful to provide
per-address statistics inside the MTA (QMGR). This would require too much resources and most people
will not use that data anyway. However, it might be useful to provide hooks into the appropriate modules
such that another program can collect the data in “real-time” without having to parse a logfile.

2.11.1.4 Performance Statistics

There should be some sophisticated programs that can give feedback about the performance of the MTA.

2.11.2 Security Considerations

General question: how to allow access to the data? Should we rely on the access restriction of the OS?
That might be complicated since we probably have to use group access rights to share data between
various modules of sendmail X. It is certainly not a good idea to give out those group rights to normal
users. Moreover, some OS only allow up to 8 groups for an account. Depending on the number of modules
some program has to communicate with this may cause problems.

2.12 Maps

Maps can be used to lookup data (keys, LHS) and possibly replace a key with the result of the lookup,
some lookups are only used to find out whether an entry exists in the map. Ordinary maps (databases)
provide only a lookup function to find an exact match26. There are many cases in which some form
of wildcard matching needs to be provided. This can be achieved by performing multiple lookups as
explained in the following.

26Regular expressions can be treated as maps which of course provide more functionality.

Sendmail X, May 4, 2005, 11:44 85

In many places we will use maps to lookup data and to replace it by the RHS of the map. Those places
are: aliases, virtual hosting, mail routing, anti-spam, etc. There are some items which can be looked up
in a map that need some form of wildcard matching. These are:

1. IP addresses: match full address, match subnets (omitting right-most numbers).

2. Hostnames/Domains: match full name, match subdomains.

3. E-mail addresses: match full address, match various subparts.

There’s an important difference between 1 and 2: IP addresses have a fixed length27, while hostnames can
have a varying length. This influences how map entries for parts (subnets/subdomains) can be specified:
for the former it is clear whether a map entry denotes a subnet while this isn’t defined for the latter, i.e.,
domain.tld could be meant to apply only to domain.tld or also to host.domain.tld.

We need a consistent way to define how a match occurs. This refers to:

• Matching of subdomains: this is currently handled inconsistently. For example, for anti-relaying
there is a feature relay hosts only which changes the matching from “every subdomain” to “ex-
act”.

Possibilities:

1. Use a leading dot to specify “only subdomains”. This would require to have two entries:
dom.ain RHS
.dom.ain RHS

to match the domain itself and all of its subdomains.
So the lookup would be: full name, name without first component but with leading dot, if
there is something left repeat previous step, until a lookup succeeds.

2. Use a wildcard:
*dom.ain RHS

This would be more in line with the expectation of normal users due to wildcard usage in
shells or regular expressions.

3. Use an “anchor”
@dom.ain RHS
dom.ain RHS

The first one will be an exact match, the second matches also all subdomains. However, this
makes the lookup algorithm slightly more complicated: during the first lookup (full host name)
it has to include the anchor (@), thereafter it must omit it. Moreover, the anchor is confusing
if the entry doesn’t apply to e-mail addresses but to connection information etc.

• Matching of +detail: How should the lookups be done in this case? And what should end up in
the ’%’ parameters for substitution in the RHS?

Lookup full address, Lookup address with ++ if +detail exists and detail not null, Lookup address
with +* if +detail exists, Lookup address without +detail.

Replacement:
1 user name
2 detail
3 +detail
4 omitted subdomain?

27in IPv6 subparts can be omitted however.

86 Sendmail X, May 4, 2005, 11:44

As usual localparts are anchored with a trailing @ to avoid confusion with domain names.

Notice: the “detail” delimiter should be configurable. sendmail 8 uses +, other MTAs use -. This may
interfere with aliases, e.g., owner-list. Question: how to solve this problem?

2.13 Modules

As explained in Section 1.1.3.4, sendmail X must provide hooks for extensions. One possible way are
modules, similar to Apache [ASF]. Modules help to avoid having large binaries that include everything
that could ever be used.

2.13.1 Security Considerations

Modules must only be loaded from secure locations. They must be owned by a trusted user.

2.14 Security Hints

This section contains a hints and thought on how to design and implement programs, esp. those related
to MTAs, to ensure they are secure.

1. Do as little as possible in set-group-ID/set-user-ID programs or completely avoid them.

It has not yet been decided whether the initial mail submission program (see Section 2.7) will be
set-group-ID. No program in sendmail X is set-user-ID root.

A set-group-ID/set-user-ID program must operate in a very dangerous environment that can be
controlled by a malicious user. Moreover, the items that must be checked varies from OS to OS, so
it is difficult to write portable code that cleans up properly.

2. Do as little as possible as root.

Only use root if absolutely necessary. Do not keep root privileges because they might be needed
later on again, consider splitting up the program instead.

Avoid writing to root owned files. Question: is there any situation where this would be required?
Avoid reading from files that are only accessible for root. This should only be necessary for the su-
pervisor, since this program runs as root so its configuration file should be owned by root. Otherwise
root would have to rely on the security of another account.

3. Programs and files are not addresses. Don’t treat them as such.

sendmail 8 treats programs and files as addresses. Obviously random people can’t be allowed to
execute arbitrary programs or write to arbitrary files, so sendmail 8 goes through contortions trying
to keep track of whether a local user was “responsible” for an address. This must be avoided.

The local delivery agent can run programs or write to files as directed by $HOME/.forward, but it
must always run as that user. The notion of “user” should be configurable, but root must never be a
user. To prevent stupid mistakes, the LDA must make sure that neither $HOME nor $HOME/.forward
are group-writable or world-writable.

Security impact: Having the ability to write to .forward, like .cshrc and .exrc and various other
files, means that anyone who can write arbitrary files as a user can execute arbitrary programs as
that user.

Sendmail X, May 4, 2005, 11:44 87

4. Move separate functions into mutually untrusting programs. However, make sure you don’t go
overboard here, use a reasonable separation.

5. Don’t trust data or commands from untrusted sources or programs. Check for correct syntax and
valid data as well as resource consumption.

Do not assume that data written to disk is secure. If at all possible, assume that someone may
have altered it. Hence no security relevant actions should be based on it.

6. Don’t parse.

The essence of user interfaces is parsing: converting an unstructured sequence of commands into
structured data. When another program wants to talk to a user interface, it has to quote: convert
the structured data into an unstructured sequence of commands that the parser hopefully will
convert back into the original structured data. This situation calls for disaster. The parser often
has bugs: it fails to handle some inputs according to the documented interface. The quoter often
has bugs: it produces outputs that do not have the right meaning. When the original data is
controlled by a malicious user, many of these bugs translate into security holes (e.g., find | xargs
rm).

For e-mail, only a few interfaces need parsing, e.g., RFC 2821 [Kle01] (SMTP) and RFC 2822
[Res01] (for mail submission). All the complexity of parsing RFC 2822 address lists and rewriting
headers must be in a program which runs without privileges.

7. Keep it simple, stupid.

Security holes can’t show up in features that don’t exist. That doesn’t mean that sendmail X will
have almost no features, but we have to be very carefull about selecting them and their security
and reliability impact.

Especially the availability of several options can cause problems if a program can access data that is
not directly accessible to the user who calls it. This applies not only to set-group/user-ID programs,
but also daemons that answer requests. This has been demonstrated by sendmail 8, e.g., debug
flags for queue runners, which reveal private data.

8. C doesn’t have boundary checks. Be careful.

C “strings” are inherently dangerous. Use something else which prevents buffer overflows.

9. Do not rely on one layer of security (defense). If a program does something security relevant, try
to use several layers of defense against attacks. If one is broken, another one hopefully kicks in.

There are more things to security than just these programming advices. For example, a program should
not leak privileged (private/confidential) information. This applies to data that is logged or made available
via debugging options. A program must also prevent being abused to access data that it can read due
to its rights and being tricked into making that data available to an attacker, neither for reading nor
writing.

2.14.1 Privileged Access

Question: where does sendmail need privileged access? The following sections provide a list and hopefully
solutions.

88 Sendmail X, May 4, 2005, 11:44

2.14.1.1 Access to Files

• :include: files (reading); handle like .forward files

• Possible solutions for the .forward problem:

– expand in LDA: LDA can return redirect addresses.

– special map database, forward -e similar to passwd(1).

– special directory /var/forward

– cron tool to migrate HOME/.forward

• SMTP AUTH in server: access to password database: can be done via a daemon

• Access to maps:

LDAP with Kerberos: there should be a way to do this without root privileges. This might be a
documentation issue (kinit before starting sendmail, chown ticket file)

PH map: it’s possible... (how?)

2.14.1.2 Sockets

• bind(2) to reserved port in server.

Problem: the server may close(2) the socket due to errors or load conditions, e.g., RefuseLA,
MaxChildren in sendmail 8. In that case the server needs to bind(2) to the port again later on.
Since the server is not supposed to run with root privileges, another program (the MCP) must take
care of that, i.e., it is notified of the problem and can either start a new server or pass an open fd
to the server.

Note: To bind(2) to a reserved port may not require root on all OS variants, there might be other
access control methods, e.g., a different, privileged user id that is allowed to bind(2) to certain
ports.

Alternatively, a server might not close(2) the socket, Instead of close(2), accept(2) and give 421
error, then close(2) just the connection.

Side note: RefuseLA, MaxDaemonChildren should be configurable per DaemonPortOption.

• bind(2) to reserved port (ClientPortOptions Port=) for client. Do not support this in sendmail X,
it’s a bad idea anyway.

2.14.1.3 Running as a different user

• Delivery to files (setreuid()) (mailfile())

– From .forward/:include:/alias files

– Handle like delivery to programs

• Delivery to programs (fork, setuid()) (deliver())

– LDA delivery (F=S, U=uid)

– From .forward/:include:/alias files

– LDA expands forward files

Sendmail X, May 4, 2005, 11:44 89

– extend LMTP to return forward redirects to the MTA to save re-invocation

– What to do if user delivers to two programs and one tempfails?

• program map: runs as address resolve user.

2.15 Misc

2.15.1 Misc Misc

Todo: structure this.

Can we keep interfaces abstract and simple enough so we can use RPCs28? This would allow us to build
a distributed system. However, this must be a compile time option, so we can ”put together” an MTA
according to our requirements (all in one; some via shared libraries; some via sockets; some via RPCs).
See also Section 3.1.1.

Rulesets, esp. check *: make the order in which things happen flexible. Currently it’s fixed in proto.m4,
which causes problems; (tempfail in parts: require rewrite, even then it’s hard to maintain etc). Use
subroutines and make the order configurable (within limits).

Use of mode bits to indicate status of file? e.g., for forward: it +t: being edited right now, don’t use
(temp.fail.) for queue files: +x completely written.

Can several processes listen on a socket? Yes, but there is a “thundering herd” problem: all processes are
woken up, but only one gets the connection. That is inefficient for large number of processes. However,
it can be mitigated by putting locks around the file such that only one process will do an accept(). See
[Ste98] for examples.

2.15.2 Configuration

Configuration: instead of having global configuration options why not have configuration functions?
For example: Timeout.Queuereturn could be a function with user-defined input parameters (in form of
macros?):

Timeout.Queuereturn(size, priority, destination) = some expression.

This way we don’t have to specify the dependency of options on parameters, but the user can do it. Is
this worthwhile and feasible? What about the expression? Would it be a ruleset? Too ugly and not really
useful for options (only for addresses). Example where this is useful: the FFR in 8.12 when milters are
used (per Daemon). Example where this is already implemented: srv features in 8.12 allows something
like this.

Problem: which macros are valid for options? For example, recipient can be a list for most mails.

2.15.3 Configuration Changes

Configuration changes may cause problems because some stored data refers to a part of the configuration
that is changed or removed. For example, if there are several retry schedules and an entry in the queue
refers to one which is removed during a configuration change, what should we do? Or if the retry schedule

28Remote Procedure Calls, not referrring to the actual implementation by Sun

90 Sendmail X, May 4, 2005, 11:44

is changed, should it affect “old” entries? sendmail 8 pretty much treats a message as new every time
it processes it, i.e., it dynamically determines the actual delivery agent, routing information, etc. This
probably can solve the problem of configuration changes, but it is certainly not efficient. We could
invalidate stored information if the configuration changes (see also Section 3.13.6).

2.15.4 Performance Measurements: Profiling

Most sendmail X programs must have a compilation switch to turn on profiling (not just -pg in the
compiler). Such a switch will turn on code (and data structures) that collect statistics related to per-
formance. For example, usage (size, hit rate) of caches, symbol tables, general memory usage, maybe
locking contentions, etc. More useful data can probably be gathered with getrusage(2). However, this
system call may not return really useful data on most OS. On OpenBSD 2.8:

long ru_maxrss; /* max resident set size */
long ru_ixrss; /* integral shared text memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */

seem to be useless (i.e., 0). SunOS 5.7: NOTES: Only the timeval member of struct rusage are supported
in this implementation.

A program like top might help, but that’s extremely OS dependent. Unless we can just link a library call
in, we probably don’t want to use this.

2.15.5 Logging

There are various requirements for logging:

• selection of what is being logged must be flexible (see Section 2.15.5.1)

• logfiles must be easy to parse and analyze (see Section 2.15.5.2)

• the logging mechanism must be extensible, i.e., it must be possible to log to a database, a custom
application, etc. (see Section 2.15.5.3)

Note: a different approach to logging is to use the normal I/O (well, only O) operations and have a file
type that specifies logging. The basic functionality for that is available in the sendmail 8/9 I/O layer.
However, it seems that this approach does not fulfill the requirements that are stated in the following
sections.

2.15.5.1 Logging Granularity

The logging in sendmail X must be more flexible than it was in older versions. There are two different
issues:

1. logging levels

2. logging per functionality

Sendmail X, May 4, 2005, 11:44 91

About item 1: the current version (sendmail 8) uses: LogLevel and the syslog priorities (LOG EMERG,
LOG ERR, ...). The latter can be used to configure where and how to log entries via syslog.conf(5).
The loglevel can be set by the administrator to select how much should be logged. Note: in some sense
these are overlapping: syslog priorities and loglevels are both indicators of how important an log event is.
However, the former is not very fine grained: there are only 8 priorities, while sendmail allows for up to
100 loglevels. Question: is it useful to combine both into a single level or should they be kept separate?
If they are kept separate, is there some correlation between them? For example, it doesn’t make sense to
log an error with priority LOG ERR but only if LogLevel is at least 50. ISC [ISC01] combines those into
a single value, but it basically uses only the default syslog priorities and then additionally debug levels.

An orthogonal problem (item 2) is logging per “functionality”29. There are many cases where it is useful
to select logging granularity dependent on functionalities provided by a system. This is similar to the
debugging levels in sendmail 8. So we can assign a number to a functionality and then have a LogLevel
per functionality. For example, -L8.16 -L20.4 would set the LogLevel for functionality 8 to 16 and for 20
to 4. Whether we use numbers or names is open for discussion.

syslog offers facilities (LOG AUTH, LOG MAIL, ..., LOG LOCALx), however, the facility for logging is
fixed during the openlog() call, it is not a parameter for each syslog() call. This is serious drawback and
makes the facility fairly useless for software packages that consists of several parts within a single process
like sendmail 8 (which performs authentication calls, mail operations, and acts as daemon (at least)).

ISC ([ISC01], see Section 3.16.16.1) offers categories and modules to distinguish between various invo-
cations of the logging call. Logging parameters are per category, i.e., it is possible to configure how
entries are logged per category and per priority. The category is similar to the syslog facility but it is
an argument for each logging call and hence offers more flexibility. However, ISC does not offer loglevels
beyond the priorities. A simple extension can associate loglevels with categories and modules. If the
loglevel specified in the logging call is larger than the selected value, then the entry will not be logged.

Misc: should we use log number consisting of 16 bit category and 16 bit type number?

2.15.5.2 Parsing Logfiles

Logfiles must be easy to parse and analyze. For parsing it is very helpful if simple text tools like awk,
sed, et.al. can be used instead of requiring a full parser, e.g., one that understands quoting and escaping.

The basic structure of logfile entries is a list of fields which consist of a name and a value, e.g.,

name1=value1, name2=value2, ...

The problems here are whether the delimiters (space or comma) are unique, i.e., whether they do not
appear in the name or the value of a field. While this is easy to guarantuee for the name (because it’s
chosen by the program), values may contain those delimiters because they can be (indirectly) supplied
by users. There are two approaches to solve this problem:

1. use a unique delimiter that cannot appear in a value;

2. change the representation of values such that the chosen delimiters are unique.

If we would relax the requirement to use simple text tools we could use a different representation, e.g.,
RCBs as described in Section 3.16.11.1.

29also called category by ISC or facility by syslog

92 Sendmail X, May 4, 2005, 11:44

Proposal 1 is not easy to achieve since values are user controlled as explained before. Approach 2 seems
to be more promising, even now there is some encoding happening in sendmail 8, i.e., non-printable
characters are replaced by their octal representation (or in some cases simply by another character, e.g.,
’?’). A simple encoding scheme would be: replace space with underscore, escape underscore and backslash
by a leading backslash. The decoding for this requires parsing to see whether underscores or backslashes
where escaped. This encoding allows to use space as delimiter30. A different proposal is not to use spaces
as delimiters (and hence not to change them), but commas or another fairly unique character. Which
character (besides the obvious ’,’ and ’;’) would be a “good” delimiter, i.e., would not commonly appear
in a value?

2.15.5.3 Extensible Logging

The logging functionality must be abstracted out, i.e., we have to come up with a useful API and provide
one library for it, which would use syslog(). Other people can replace that library with their own, e.g.,
for logging into a database, files, or whatever.

2.15.6 Debugging

A simple level of debugging can be achieved by turning on verbose logging. This may be via additional
logging options, e.g., -dX.Y, similar to sendmail 8, but the output is logged not printed on stdout.

Additionally, there must be some way to start a program under a debugger. Remember: most programs
are started by the supervisor, so it is not as simple as in sendmail 8 to debug a particular module. Take
a look at postfix for a possible solution.

2.15.7 Robust Programming

sendmail X must behave well in the case of resource shortages. Even if memory allocation fails, the
program should not just abort, but act in a fail-safe manner. For example, a program that must always
run even in the worst circumstances is the queue manager. If it can’t allocate memory for some necessary
operation, it must fall back to a “survival” mode in which it does only absolutely necessary things and
shuts down everything else and then “wait for better times” (when the resource shortage is over). This
might be accomplished by reserving some memory at startup which will be used in that “survival” mode.

postfix components just terminate when they run out of memory if a my*alloc() routine is used. This
is certainly not acceptable by some parts of postfix nor sendmail X. Library routines especially shouldn’t
have this behavior.

2.16 Schedule

sendmail X will be developed in several stages such that we have relatively soon something to test and
to experiment with.

First, the design and architecture must be specified almost completely. Even if not every detail is specified,
every aspect of the complete system must be mentioned and be considered in the overall design. We don’t
want to patch in later new parts which may require a redesign of some components, esp. if we already
worked on those.

30of course the encoding can be changed if a different delimiter should be used

Sendmail X, May 4, 2005, 11:44 93

However, the implementation can be done in stages as follows: the first version will consist only of a
relaying MTA, i.e., a system that can accept mail via SMTP and relay it to delivery agents that speak
SMTP or LMTP. This way we will have an almost complete system with basic functionality. The “only”
parts that are missing are other delivery agents, an MSP, and some header rewriting routines etc.

2.17 Glossary

This section contains the explanation of terms used in this (and related) documents. The terms are
usually taken from various RFCs.

• Mail Body: part of mail content, may be structured according to MIME (RFC 2045) if so specified
in the headers.

• Mail Content: part of mail object after DATA: consists of headers and body (RFC 2821).

• Mail Data: same as Mail Content.

• Mail Envelope: Consists of one sender and one or more recipients (RFC 2821).

• Mail Headers: Collection of field/value parts (RFC 2822), must be US ASCII.

• Mail Object: contains envelope and content. SMTP transports mail objects (RFC 2821).

• Resolved address: a tuple that contains the delivery agent, the host(s) to which to connect, and
the address to present to those hosts as recipient. See Section 3.6.3.1 for details.

• SMTP Session: see RFC 2821.

• SMTP Transaction: see RFC 2821.

94 Sendmail X, May 4, 2005, 11:44

Chapter 3

Sendmail X: Functional Specification

3.1 Functional Specification of sendmail X

This chapter describes the external functionality as well as the internal interfaces of sendmail X as much
as required, i.e., for an implementation by experienced software engineers with some knowledge about
MTAs etc. In each section it will be made clear what is the external functionality and which API or
other interface (in the form of a protocol) will be provided.

The internal functionality describes the interfaces between the modules of sendmail X. As such they must
never be used by anything else but the programs of which sendmail X consists. These interfaces are
subject to changes without notice. It is not expected that modules from different versions work with each
other, even though it might be possible.

An external interface is one which is accessible by a user.

3.1.1 Asynchronous APIs

Many of the sendmail X modules require that function calls do not block. If a function can block
then an asynchronous API is required. Unfortunately it seems hard to specify an API that works well
with blocking and non-blocking calls. Hence the APIs will be specified such that most (or all) blocking
functions are split in two: one to initiate a function (the initiate function) and another one (the result
function) to get the result(s) of the function call. To allow for a synchronous implementation, the first
(initiate) function should also provide result parameters and a status return. The status indicates whether
the result parameters have valid values, or whether the result will be returned later on via the second
(get result) function. This convention seems to make it possible to provide APIs that work for both
(synchronous and asynchronous) kind of implementations.

The calling program should not be required to poll for a result, but instead it should be notified that a
result is available. This can be done via some interprocess notification mechanism, e.g., System V message
passing or via a message over a socket through which both programs communicate. Then those programs
can use select(2), poll(2), or something similar to determine whether a message is available. Note:
this requires that both programs agree on a common notification mechanism which can be a problem in
case of (third-party) libraries. For example, OpenLDAP [LDA] does provide an asynchronous interface
(e.g., ldap search(3)), but it does not provide an “official” notification mechanism1, it requires polling

1accessing an internal file descriptor allows to get notified when a result arrives, but is not a documented API

95

96 Sendmail X, May 4, 2005, 11:44

(ldap result(3)). It should be possible to have a function associated with a message (type) such that
the main loop is just a function dispatcher (compare engine in libmilter).

3.1.1.1 Generic Description of Asynchronous Operation

In this section we describe how asynchronous “function” calls can be handled. For the following discussion
we assume a caller C and a callee S. The caller C creates a request RQ that contains the arguments for
a function F, and a token T which uniquely identifies the request RQ (we could write RQ(T)). Note:
it is also possible to let S generate the token if the argument is a result parameter (pointer to a token
which can be populated by S). Additionally, the argument list may contain a result parameter PR in
which a result can be immediately stored if the call can be handled synchronously. C enqueues the fact
that it made the function call by storing data describing the current state St(T) in a queue/database
DB along with the identifier T. The request is sent to S (may be appended to a queue for sending via
a single communication task instead of sending it directly) unless it can be handled immediately and
returned via the result parameter PR (the return status must specify that the result has been returned
synchronously). A communication task receives answers A from S. The answer contains the identifier T
which is used to lookup the current data St(T) in the DB. Then a function (the result or callback function
RC) is invoked with St and A as parameters. It decodes the answer A (which contains the function result)
and acts accordingly, also taking the current state St into account and probably modifying it accordingly.
Additionally, it may use the result parameter PR to store the result in the proper location. The result
parameter may provide some buffer (or allocated) structure in which to store the result such that the
callee is not responsible for the allocation. However, the details of this depend on the functions and their
requirements, e.g., their output values (it may be just a scalar).

To handle immediate status returns, the function that sends (enqueues) the request has to be able to
deal with that. Such an implementation is an enhancement for a later version (probably not for 9.0).

3.1.1.2 Some Remarks about Identifiers

There are several kinds of identifiers that are used within sendmail X for various purposes. Identifiers
(handles, tags) in general must of course be unique during the time in which they are used to identify an
object. Beyond this obvious purpose, some identifiers should fulfill other requirements.

1. Some identifiers are supposed to be unique for a long time, e.g., for sessions and transactions. It
seems useful to make these unique for a much longer time which allows them to be used as identifiers
in logfiles over a long period. These identifiers should also be easily representable in human-readable
form.

2. Identifiers for asynchronous operations (see Section 3.1.1.1) are very short-lived, they need to be
only valid while the transaction is not yet finished. In some cases it might be useful to assure that
they are unique even after the end of a transaction to avoid problem with “hanging” transactions
(compare TCP/IP?).

If a handle is only used by the caller to identify an object in its memory, then it seems a good idea to
use the memory address of that object as handle (as for example done by aio(3), see aio return(3)).
The advantages are:

• It doesn’t require any lookup functions that map the handle to the address of the object.

• The handles are short (not 20 bytes like the current session identifiers).

• No function is required to generate them.

Sendmail X, May 4, 2005, 11:44 97

The disadvantages are:

• 32/64bit address pointers must be handled appropriately. This could be configured at compile
time and “encoded” in the protocol version.

• The objects must not move. Notice: this may happen if an object is moved from one DB to
another one while a request is outstanding.

• The handle is not unique over a longer time period.

3.2 Configuration

3.2.1 Configuration Structure

Section 2.2.5 gives an example how two SMTP servers are defined and reference common parts (aliases).
However, there are some problems due to the modularized implementation of the MTS: many operations
are performed by the address resolver, e.g., access map lookups and routing decisions including whether a
recipient address is local. It is easy to imagine a configuration in which different servers listen on different
IP addresses and need different configurations, e.g., a map of local users or even anti-spam configurations.
Most MTAs only offer virtual hosting, i.e., one MTA is responsible for several domains, but those domain
have basically the same configuration. sendmail 8 has some options per “daemon” (DaemonPortOptions)
and several requests have been made to have more options “per daemon”. This is easy in sendmail X
as long as those options are “local” to the server, but it is complicated when other modules provide the
functionality.

There are two problems involved here:

1. options are currently specified in the module which implements the functionality, e.g.,

• access map is specified in smar and a flag in smtps turns its usage one.

• a mailertable is specified in smar and used by smtps to decide whether a recipient is local and
by qmgr for routing addresses.

2. some functionality provided by an option is used by different modules, e.g., mailertable (as explained
above).

Problem 1 could be solved as explained in Section 2.2.5.

Problem 2 could be solved by separating the functionality, e.g., mailertable could be split into two
tables: one to decide where a recipient is local, and another one for routing addresses. However, this
may increase maintainance costs as some information is duplicated in different tables which may cause
consistency problems.

3.2.2 Naming Conventions

It is important to use consistent naming; not just in the source code but especially in the configuration
file.

In the following some proposals are given to achieve this. First about the structure of entries:

1. Entries can consist of components which are delimited by underscores (or dots).

98 Sendmail X, May 4, 2005, 11:44

2. Entries are named in a top-down manner: the most important component is first, e.g., queue timeout.
However, if an adjective is used, it may make sense to use the “natural” ordering, i.e., the adjective
before the noun, e.g., max processes. These two rules may be used within a single entry, e.g.,
smtps max connections.

3. Whenever useful, entries should be structured, not written as components. This is similar to
breaking a program into several functions instead of inlining everything. However, there is no clear
rule about this. Some rules of thumb:

(a) If there are several entries (more than three(?)) with the same prefix, then creating a structured
entry is useful.

(b) If there are several entries (more than two(?)) with the same prefix which are used in different
components, then creating a structured entry is useful.

4. Abbreviations are used sparringly and if they are used, then they are used everywhere, they should
not be mixed with the unabbreviated words.

Next about the (components of) names used:

1. entries: number of entries in some structure.

2. size: size of some structure (in KB, MB, etc)

3. space: required free space for some structure in some other medium, e.g., on disk.

4. level: level at which some events should occur, usually refers to producing some kind of output,
e.g., log level.

3.2.3 Specification of Classes (Lists, Sets)

Question: how should classes (lists, sets) be specified? Should it be just a lists of entries in the configura-
tion file? sendmail 8 allows to load classes from other sources, e.g., from an external file, a program, or a
map lookup. In the latter case a key is looked up in a map and the RHS (split?) is added to the specified
class. It might be useful to have also a map which simply specifies the valid members as keys, i.e., lookup
a value and if it is found, it is a member of the class for which the map is given. More complicated would
be that the RHS contains a list of class names which would be compared against the class that is checked.

3.3 Supervisor

3.3.1 External Interfaces

The supervisor doesn’t have an external interface, except for starting/stopping it. Reconfiguring is
probably done via stop/start, or maybe via sending it a HUP signal. The latter would be good enough
to enable/disable parts of sendmail X, i.e., edit the configuration file and restart the supervisor. In the
first version, there will be no special commands to enable/disable parts of sendmail X.

The supervisor can be configured in different ways for various situations. Example: on a gateway system
local delivery is not required hence the LDA daemon is not configured (or started).

Sendmail X, May 4, 2005, 11:44 99

3.3.2 Operation

The MCP starts processes on demand, which can come from several sources:

1. The configuration requires more than zero processes (see Section 3.3.4).

2. There is a communication request coming in on the socket on which the process is supposed to listen,
but there is no process available (and the maximum number of processes has not been reached yet).

3. Another process requests that a process is started, a typical example would be the QMGR asking
for more SMTPS or DA processes.

The MCP keeps track of the number of processes and acts accordingly, i.e., when the upper limit is
reached no further processes will be started, when a lower limit is reached more processes are started.
Child processes also inform the MCP whenever they finished a task and are available for a new one.

Case 2: If there is no process available then the MCP listens on the communication channel and starts a
process when a communication comes in. In that case the connection will be passed to the new process
(in the form of an open file descriptor). This is similar to inetd or postfix’s master program. Question:
how to deal with the case where processes are available? Should those processes just call accept() on the
connection socket? That’s the solution that the postfix master program uses; the child processes have
access to the connection socket and all(?) of them listen to it (Wietse claims the thundering herd problem
isn’t really a problem since the number of processes is small).

Question: would it be more secure if only a program can request to start more copies of itself? However,
that would probably increase the program complexity (slightly) and communication overhead. Decision:
designated programs can request to start other programs.

Question: should the MCP use only one file descriptor to receive requests from all processes it started
or should it have one fd per process or process type? The latter seems better since it allows for a clean
separation, even though it may require (a few) more fds.

3.3.3 Shutdown

There are several types of shutdown:

• “normal” shutdown: the programs are told to shutdown without interrupting ongoing work. How-
ever, no new work (connections etc) is started anymore.

• immediate shutdown: the programs must shut down immediately, ongoing work must be terminated,
e.g., open connections are closed.

• crash: the system or some programs crash without having the chance for an orderly shutdown. If
this happens, the state of the system must be recoverable, i.e., there must be no inconsistency after
startup, or only those which can be resolved without loss of accepted mails.

Question: how to distinguish between immediate shutdown and “normal” shutdown? The former is
probably triggered by a signal (SIGTERM), the latter by a command from the MCP (or some other
control program).

The supervisor is responsible for shutting down the entire sendmail X system. To achieve this, the
receiving processes are first told to stop accepting new connections. Current connections are either

100 Sendmail X, May 4, 2005, 11:44

terminated (if immediate shutdown is required, e.g., system will be turned off fast) or are allowed to
proceed (up to a certain amount of time). The queue manager will not schedule any delivery attempts
any more and wait for outstanding connections to terminate. Delivery agents will be told to terminate
(again: either immediately or orderly). The helper programs, e.g., address resolver, will be terminated
as soon as the programs which require them have stopped.

3.3.4 Configuration

The configuration of the MCP might be similar to the master process in postfix. It contains a list of
processes, their types, the uid/gid they should run as, the number of processes that should be available,
how they are supposed to be started, etc. It should also list how the processes communicate with the MCP
(fork()/wait(), pipe), how often/fast a process can be restarted before it is considered to fail permanently.
The latter functionality should probably be similar to (x)inetd.

Here’s the example master.cf2 file from postfix:

Postfix master process configuration file. Each line describes how a mailer component program
should be run. The fields that make up each line are described below. A ”-” field value requests
that a default value be used for that field.

Service: any name that is valid for the specified transport type (the next field). With INET
transports, a service is specified as host:port. The host part (and colon) may be omitted.
Either host or port may be given in symbolic form or in numeric form. Examples for the
SMTP server: localhost:smtp receives mail via the loopback interface only; 10025 receives
mail on port 10025.

Transport type: ”inet” for Internet sockets, ”unix” for UNIX-domain sockets, ”fifo” for named
pipes.

Private: whether or not access is restricted to the mail system. Default is private service.
Internet (inet) sockets can’t be private.

Unprivileged: whether the service runs with root privileges or as the owner of the Postfix
system (the owner name is controlled by the mail owner configuration variable in the main.cf
file).

Chroot: whether or not the service runs chrooted to the mail queue directory (pathname is
controlled by the queue directory configuration variable in the main.cf file). Presently, all
Postfix daemons can run chrooted, except for the pipe and local daemons. The files in the
examples/chroot-setup subdirectory describe how to set up a Postfix chroot environment for
your type of machine.

Wakeup time: automatically wake up the named service after the specified number of seconds.
A ? at the end of the wakeup time field requests that wake up events be sent only to services
that are actually being used. Specify 0 for no wakeup. Presently, only the pickup, queue
manager and flush daemons need a wakeup timer.

Max procs: the maximum number of processes that may execute this service simultaneously.
Default is to use a globally configurable limit (the default process limit configuration param-
eter in main.cf). Specify 0 for no process count limit.

Command + args: the command to be executed. The command name is relative to the Postfix
program directory (pathname is controlled by the program directory configuration variable).

2this file can be changed by the user within the restriction listed in caps inside the file. Wietse is certainly tired of people
breaking postfix by not following the instructions.

Sendmail X, May 4, 2005, 11:44 101

Adding one or more -v options turns on verbose logging for that service; adding a -D option
enables symbolic debugging (see the debugger command variable in the main.cf configuration
file). See individual command man pages for specific command-line options, if any.

SPECIFY ONLY PROGRAMS THAT ARE WRITTEN TO RUN AS POSTFIX DAEMONS.
ALL DAEMONS SPECIFIED HERE MUST SPEAK A POSTFIX-INTERNAL PROTO-
COL.

DO NOT CHANGE THE ZERO PROCESS LIMIT FOR CLEANUP/BOUNCE/DEFER
OR POSTFIX WILL BECOME STUCK UP UNDER HEAVY LOAD

DO NOT CHANGE THE ONE PROCESS LIMIT FOR PICKUP/QMGR OR POSTFIX
WILL DELIVER MAIL MULTIPLE TIMES.

DO NOT SHARE THE POSTFIX QUEUE BETWEEN MULTIPLE POSTFIX INSTANCES.
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)

smtp inet n - n - - smtpd
#628 inet n - n - - qmqpd
pickup fifo n n n 60 1 pickup
cleanup unix - - n - 0 cleanup
qmgr fifo n - n 300 1 qmgr
#qmgr fifo n - n 300 1 nqmgr
rewrite unix - - n - - trivial-rewrite
bounce unix - - n - 0 bounce
defer unix - - n - 0 bounce
flush unix - - n 1000? 0 flush
smtp unix - - n - - smtp
showq unix n - n - - showq
error unix - - n - - error
local unix - n n - - local
virtual unix - n n - - virtual
lmtp unix - - n - - lmtp

Interfaces to non-Postfix software. Be sure to examine the manual pages of the non-Postfix
software to find out what options it wants. The Cyrus deliver program has changed incom-
patibly.

cyrus unix -n n --pipe
flags=R user=cyrus argv=/cyrus/bin/deliver -e -m ${extension} ${user}

uucp unix -n n --pipe
flags=Fqhu user=uucp argv=uux -r -n -z -a$sender - $nexthop!rmail ($recipient)

ifmail unix - n n - - pipe
flags=F user=ftn argv=/usr/lib/ifmail/ifmail -r $nexthop ($recipient)

bsmtp unix - n n - - pipe
flags=Fq. user=foo argv=/usr/local/sbin/bsmtp -f $sender $nexthop $recipient

First take at necessary configuration options for MCP:

• name of service (used as identifier).

• connection type: inet, unix, fifo. For inet: specify also address:port (address can be omitted), for
unix: path name (with appropriate default).

102 Sendmail X, May 4, 2005, 11:44

• private: connection will not be accessible to non-sendmail X programs.

• user/group: which user to run as.

• chroot: use chroot (which directory?).

• feedback type: just termination information, or allowed to request start/termination of other pro-
grams.

• wakeup: wake up process at certain intervals (Question: is this necessary? Probably not.)

• minimum and maximum number of processes.

• number of crashes which are allowed per time unit before the service is shut down permanently.

• grouping: it might be necessary to shut down other programs if one crashes due to their interde-
pendencies, e.g., if they access a Berkeley DB.

• ordering: some processes must be started or even be running before others.

• command and arguments.

Notice: using a syntax as in master.cf or inetd.conf is not a good idea, since it violates the requirements
we listed in Section 2.2.2. The syntax must be the same as for the other configuration files for consistency.

3.3.5 Internal Interfaces

The supervisor starts and controls several processes. As such, it has a control connection with them. In
the simplest case these are just fork(), wait() system calls, in more elaborate case it may be a socket
over which status and control commands are exchanged.

The supervisor may set up data (fd, shared memory, etc) that should be shared by different processes of the
sendmail X system. Notice: since the MCP runs as root, it could setup sockets in protected directories to
which normal users don’t have access. Open file descriptors to those sockets (for communication between
modules) could then be passed on to forked programs. This may help to increase the security of sendmail
X due to the extra protection. However, it requires that the MCP sets up all the necessary communication
files. Moreover, if a program closes the socket (as SMTPS may do for port 25) it can’t reopen it anymore
and hence must get the file descriptors from the MCP again (either by passing a fd or by terminating
and being started). This may not be really useful, but it’s just an idea to be noted.

The MCP will bind to port 25 as explained earlier (see Section 2.3) and hand the open socket over to the
SMTPS (after changing the uid).

3.4 Queue Manager

Question: Will this be a (purely) event driven program?

Question: worker model or thread per functionality? It won’t be a single process which uses event based
programming since this doesn’t scale on multi-processor machines. It seems a worker model is more
appropriate: it is more general and we might be able to reuse it for other modules, see also Section
3.20.2.

Sendmail X, May 4, 2005, 11:44 103

3.4.1 External Interfaces

The queue manager doesn’t have an external interface. However, it can be configured in different ways
for various situations. Todo: and these are?

Such configuration options influence the behavior of the scheduler, the location of the queues, the size of
memory caches, etc.

3.4.2 Shutdown

The queue manager will not schedule any delivery attempts any more. It will wait for outstanding
connections to terminate unless an immediate shutdown is requested. The incoming queue will be flushed
to the deferred queue. Delivery agents are informed by the MCP to stop. The QMGR is waiting for them
to terminate and records the delivery status in the deferred EDB.

3.4.3 Internal Interfaces

The status of the queue manager must be accessible from helper programs, e.g., see Section 2.11.1 The
QMGR does not provide this as user accessible interface to allow for changing the internal protocols
without having to change programs outside sendmail X.

Note: due to the complexity of the QMGR the following sections are not structured as subsection of this
one because the nesting becomes too deep otherwise.

3.4.4 Indices for Accessing the EDBs

The main index to access the deferred EDB will be the time of the next try. However, it is certainly
useful to send entries to a host for which a DA has an open connection. Question: what do we use as
index to find entries in an EDB to reuse an open connection? An EDB stores canonified addresses or
resolved addresses (DA, host, address), it does not store MX records. Those are kept in a different cache
(mapping), if they are cached at all. We cannot use the host signature for lookups as sendmail 8 does for
piggybacking for the same reason: the host signature consists of the MX records. 8.12 uses an enhanced
version for piggybacking, i.e., not the entire host signatures need to match, but only the first. Maybe it is
sufficient for selection of entries from an EDB to use the host name (beside all the other criteria as listed
in Section 2.4.4.1). The actual decision to reuse a connection is made later on (by the micro scheduler,
see Section 2.4.4.3). That decision is based on the host name/IP address and maybe the connection
properties, e.g., STARTTLS, AUTH data.

If a DA has an open connection, then that data is added to the outgoing open connection cache (an
incoming connection from a host may be taken as hint that the host can also receive mail). The hint is
given to the schedulers, which may change their selection strategy accordingly. The first level scheduler
can reverse map the host name/IP address to a list of destination hosts that can appear in resolved
addresses. Then a scan for those hosts can be made and the entries may be moved upward in the queue.

Question: do we only lookup queue entries for the best MX record (to piggyback other recipients on an
open connection)? We could lookup queue entries for lower priority MX records if we know the higher
ones are unavailable. It may be a question of available resources (computational as well as network
I/O) whether it is useful to perform such fairly complicated searches (and decision processes) to reuse a
connection. In some cases it might be simpler (and faster) to just open another connection. However, it
might be “expensive” to setup a connection, esp. if STARTTLS or something similar is used. A really

104 Sendmail X, May 4, 2005, 11:44

sophisticated scheduler may take this into account for the decision whether to use an existing connection
or whether to open new ones. For example, if the number of open connections is large then it is most
likely better to reuse an existing connection. Those numbers (total and per domain) will be configurable
(and may also depend on the OS resources).

3.4.5 Interface to SMTP DAs

Question: which host information does the QMGR send to the DA? Only the host from the resolved
address tuple (so the DA does MX lookups), the MX list, only one host out of the MX list, or only
one IP address? A “clean” interface would be to send only the resolved address and let the DA do the
MX lookup etc. However, for piggybacking the QMGR needs to know the open connections and it must
be able to compare those connections with the entries in the EDB. Hence the QMGR must do the MX
expansion (using the AR or DNS helper processes).

Very simple outline of selection of next hop(s) for SMTP delivery:

1. Determine DA, destination host, address (done by AR). Let’s assume the DA is a SMTP client (the
first sendmail X prototype will only support SMTP and LMTP).

2. Lookup MX records for destination host. If none: only destination host (priority 0) in list.

3. Is any local host in list? If yes: remove all entries with same priority of higher.

4. Is the list of MX records empty? If yes: failure (maybe configuration option).

5. Randomize equal priority MX records; try to use an existing randomization3 if it matches an existing
set of MX records, otherwise we need functions on sets, at least for comparison. For example, if
one lookup returns A and B and another one returns B and A, then a list comparison will fail,
but comparing the two sets will return that they are equal. It would also be helpful to have a “is
subset of” function (if the lists are sorted according to the same criteria, then sets a “is prefix of”
function).

6. Lookup address records for each host in the list. Question: who does this? Will the AR return the
entire list or will the QMGR cache that data and access it directly (asking a DNS helper if entries
are expired)?

The MX list and the address list are represented as linked lists, with two different kind of links: same
priority, lower priority. This can be either coded as two pointers or as a “type of link” value. If we use
two pointers then we have to decide whether we fill in both pointers (if a record of that type is available)
or only one. For example, let A, B, and C be MX records for a host with value 10, 10, and 20 respectively.
Does A have only a (same priority) pointer to B, or does it have pointers to B and C? Is there a case
where we do not go sequentially through the list? Maintaining two pointers is more effort which may not
give us any advantage at all.

3.4.5.1 QMGR - Delivery Agents API

The QMGR provides APIs for the different modules with which it communicates. The two most important
interfaces are those to the SMTP server and the delivery agents, the former is discussed in Section 3.4.12.

3sendmail 8 uses mxrand() to compute a hash of the host name which then is used to sort the records (as second order
key after priority). This assures that the same order is used every time, hence it may not really fulfill the RFC requirement.

Sendmail X, May 4, 2005, 11:44 105

Question: how does the QMGR control the DAs? That is, who starts a new DA if necessary? This
should be the MCP, since it starts (almost) all sendmail X processes. However, what if a DA is already
running and the QMGR just wants more? Does the MCP start more or does a DA fork()? Probably the
former, which means the QMGR and the MCP must be able to communicate this type of data. Do the
DAs terminate themselves after some (configurable) idle time? That should be a configuration option in
the MCP control file, see Section 3.3.4.

Question: does the QMGR have each of the following functions per DA or are these generic functions
which take the name/type of the DA as argument and are dispatched accordingly?

General side note about (communication) protocols: it seems simpler that the caller generates the ap-
propriate handles instead of the callee. The caller has to pass some kind of token (handle/identifier)
anyway to the callee to associate the result it is getting back with the correct data (supplied via the call).
If this would be a synchronous call, then the callee could generate the handle, but since we must deal
with asynchronous calls, we must either generate the handle ourselves such that the callee can use it to
identify the returned data, or the calling mechanism itself must generate the data, which however makes
this too complicated.

• qmgr da new(IN da, IN da-descripton, OUT da-handle, OUT status)

Create/request a new DA (or maybe several). The properties etc are defined in da-descripton.

• qmgr da new result(IN da, IN da-handle, OUT status)

Get result(s) from creating/requesting a new DA.

• qmgr da stop(IN da, IN da-handle, OUT status)

Stop a DA (all DAs of that type).

• qmgr da stop result(IN da, IN da-handle, OUT status)

Get result of stopping a DA.

• qmgr da sess new(IN da, IN session, IN da-session-handle, IN transaction, IN da-trans-handle, OUT
session-status, OUT trans-status, OUT status)

Open a connection for delivery and send one mail. session contains the destination host to which
to connect and some requirements, e.g., STARTTLS, AUTH. If we only want to open a connection,
transaction and da-trans-handle can be NULL.

• qmgr da sess new result(IN da, IN da-session-handle, IN da-trans-handle, OUT session-status, OUT
trans-status, OUT status)

Get results of opening a connection for delivery and sending one mail. The status can be fairly
complicated since the operation can fail for various reasons in different stages, see 3.8.4.1.

• qmgr da ta new(IN da, IN da-session-handle, IN transaction, IN da-trans-handle, OUT trans-
status, OUT status)

Perform one delivery (maybe to multiple recipients), transaction contains necessary information for
session.

• qmgr da ta new result(IN da, IN da-session-handle, IN da-trans-handle, OUT trans-status, OUT
status)

Get results for delivery attempt. This can be a state for the entire transaction, or per recipient
depending on the DA and the actual delivery.

Notice: da-session-handle might not be necessary, da-trans-handle is sufficient to identify the trans-
action. However, an implementation might prefer to get also the session handle.

106 Sendmail X, May 4, 2005, 11:44

• qmgr da session close(IN da, IN da-session-handle, OUT status)

Close a connection (session).

• qmgr da session close result(IN da, IN da-session-handle, OUT status)

Get result of closing a connection (session).

Notice: the handles (identifiers) from the DA (da-trans-handle, da-session-handle) are not related to the
transaction/session identifiers of SMTPS. That is, we do not “reuse” those identifiers except for transac-
tion identifiers for the purpose of logging. We only need those handles to identify the sessions/transactions
in SMTPC and QMGR, i.e., to associate the data structures (and maybe threads) that describe the
sessions/transactions. We can generate the identifiers in a DA (SMTPC) similarly as in SMTPS; the
differences are:

• the sessions/transactions come from QMGR instead of an (external) client over SMTP,

• the identifiers are ephemeral, they don’t need to be stored beyond their lifetime. Hence in theory
we could reuse them, e.g., just use a thread identifier, however, unique identifiers over the life of
a process have the advantage of minimizing possible confusion due to reuse if that isn’t properly
synchronized between QMGR and DA.

See also Section 3.1.1.2.

3.4.6 Transferring Data between EDBs

There are several different EDBs in the QMGR: active queue (AQ or ACTEDB), incoming queue (IN-
CEDB; two variants: IBDB: backup on disk and IQDB: in memory only), and main (deferred) queue
(DEFEDB). Data must be transferred between those DBs in various situations, e.g., for scheduling data
is taken from IQDB or DEFEDB and put into ACTEDB. Doing so involves copying of data and maybe
allocating memory for referenced data structures, e.g., mail addresses, and then copying the data from
one place (Src) into another (Dst). This problem can be solved in two ways:

1. moving the pointer to the data from the old structure Src to the new one Dst, i.e., copy the pointer
and set it to NULL in Src. This only works if the data isn’t needed anymore in Src.

2. Use data structures with reference counts, see Section 3.16.7.1. This is a clean solution but adds
overhead to data structures that barely need the feature (and may require additional locking).

Another approach is to use the same data structures for all/most EDBs with an additional type field that
defines which data elements are valid. This way copying is either not necessary or can be done almost
one-to-one in most cases. The disadvantage of this approach is the potential waste of some memory
and fewer chances for typechecks by the compiler (however, more generic functions might be possible).
Moreover, the data requirements for incoming and outgoing envelopes are fairly different, so maybe those
should be separate data structures.

Maybe only ACTEDB and DEFEDB data structures should be identical, or at least ACTEDB structs
should be a superset of DEFEDB structs. Otherwise we need to update entries in DEFEDB by reading
the data in (into a structure for DEFEDB), modifying the data (according to the data in ACTEDB),
and writing the data out.

Sendmail X, May 4, 2005, 11:44 107

3.4.6.1 Detailled Data Flow for Cut-Through Delivery

Section 2.4.3.3 describes the data flow of envelopes between the various EDB that QMGR maintains,
while Section 2.4.3.6 describes the changes required for cut-through delivery. This section specifies the
functional behavior for the latter.

If the final data dot is received by the SMTP server, it sends a CTAID record to QMGR including the
information that this transaction is scheduled for cut-through delivery. Such an information is given by
QMGR in reply to RCPT records: if all of them are flagged by QMGR for cut-through delivery, the
transaction is scheduled for it. After receiving CTAID QMGR decides whether the scheduler will go
ahead with cut-through delivery. If it doesn’t, it sends back a reply code for case 1b below and proceeds
as for normal delivery mode. Otherwise all recipients are transferred to AQ immediately, the recipients
and the transaction are marked properly and delivery attempts are made. Moreover, a timeout is set for
the transaction after which case 1b is selected.

Question: should the data be in some IBDB list too?

1. QMGR can return one of the following replies:

(a) accept without fsync(2): the mail has been successfully delivered to all recipients. All recip-
ients and the transaction data are removed from IQDB and from AQ.

(b) accept with fsync(2): the mail has not been successfully delivered to all recipients. QMGR
must store the information about the transaction safely in IBDB (or DEFEDB) before sending
this reply.

(c) reject

2. QMGR does not reply within the timeout: return a temporary error to the client.

For case 1b the SMTP server needs to send another message to QMGR telling it the result of fsync(2).
If fsync(2) fails, the message must be rejected with a temporary error, however, QMGR may already
have delivered the mail to some recipients, hence causing double deliveries.

3.4.6.2 Reading Entries from Deferred Queue

To minimize disk I/O an envelope database cache (EDBC) is used (see Section 3.4.6.2). As explained in
Section 2.4.3.5.1 the cache may not always contain all references to DEFEDB due to memory restrictions.
Such a restriction can be either artificially enforced (by specifying a maximum number of entries in EDBC)
or indirectly if the program runs out of memory when trying to add a new entry to the cache (see also
Section 3.4.17.1). In that case, the operation mode of reading entries from the deferred queue must be
changed (from cached to disk). In the disk mode the entire DEFEDB is read at regular intervals to
fill up EDBC with the youngest entries which in turn are read at the appropriate time from DEFEDB
into AQ. Question: how can those “read the queue” operations be minimized? It is important that
EDBC is properly maintained, it contains the “youngest” entries, i.e., all entries in DEFEDB that are
not referenced from EDBC have a “next time to try” ntt that is larger than the last entry in EDBC.
Question: how can this be guaranteed? Proposal: when switching from cached to disk set a status flag
to keep track of the mode, and store the maximum ntt in nttmax. When inserting entries into EDBC,
ignore everything that has a ntt greater then nttmax. If entries are actually added (ntt < nttmax) and
hence older entries are removed, set a new nttmax. Perform a DEFEDB scan when EDBC is empty or
below some threshold, e.g., only filled up to ten per cent and nttmax − now < 10. If all entries from
DEFEDB can be read, reset the mode to cached.

108 Sendmail X, May 4, 2005, 11:44

3.4.7 Reconstructing Data from IBDB

In case of an unclean shutdown there might be open transactions in IBDB. Hence on startup the QMGR
must read the IBDB files and reconstruct data as necessary. The API for IBDB is specified in Section
3.13.4.3. It allows an application to read all records from the IBDB. To reconstruct the data, the function
sequentially reads through IBDB and stores the data in an internal data structure (in the following called
RecDB: Reconstruction DB)that allows access via transaction/recipient id. The entries are ordered, i.e.,
the first entry for a record has the state open, the next entry has the state done (with potentially more
information, e.g., delivered, transferred to DEFEDB due to a temporary/permanent failure, or cancelled).
The second entry for a record might be missing which indicates an open transaction that must be taken
care of. For each done transaction the corresponding open entry is removed from RecDB. After all records
have been read RecDB contains all open transactions. These must be added to DEFEDB or AQ. If they
are added only to the latter, then we still need to keep the IBDB files around until the transactions are
done in which case a record is written to IBDB. This approach causes problems if the number of open
transactions exceeds the size of AQ in which case an overflow mechanism must set in, e.g., either delaying
further reading of IBDB or writing the data to DEFEDB. In the first sendmail X version the data should
be transferred to DEFEDB instead for simplicity. Even with this simpler approach there are still some
open problems:

1. The most important is the order of operations: should the reconstruction of the open transactions
be done concurrently with the normal operation of QMGR?

2. A smaller problem is that IBDB does not contain all data that is necessary for DEFEDB entries
(see Sections 3.4.10.4 and 3.4.10.6).

About 1: If yes, a faster startup time is achieved since the QMGR does not need to wait for the re-
construction. This of course causes other problems, e.g., what to do if the reconstruction runs into
problems4? There are further complications with the order of operations: the reconstruction must be
performed before the new IBDB is opened unless either a different name is used or the sequence numbers
start after the last previously used entry. In the former case some scheme must be used to come up with
names that will not cause problems if the system goes down while the reconstruction is still ongoing.
In the latter case the problem of a wrap-around must be dealt with, i.e., what happens if the sequence
number reaches the maximum value? A simple approach would be to simply start over at 1 again, but
then it must be avoided that those files are still in use (which seems to be fairly unlikely if for example a
32 bit unsigned integer is used because the number of files would be huge, definitely larger what is sane
to store in a single directory5).

A potential solution to the problem of overlapping operation is to use different sets of files, e.g., two
different directories: ibdbw for normal operation, ibdbr for recovery. In that case at startup the following
algorithm is used: If both ibdbw and ibdbr exist then the recovery run from the last startup didn’t finish
properly. Hence the rest of QMGR is not started before completing recovery, i.e., asynchronous operation
is only allowed if the previous recovery succeeded. This simple approach allows us to deal with recovery
problems without introducing an unbound number of IBDB file sets (directories). If only ibdbw exists,
then rename it to ibdbr and let the QMGR startup continue while recovery is running. After recovery
finished, ibdbr is removed thus indicating successful recovery for subsequent startups.

This approach can be extended to deal with a cleanup process that “compresses” IBDB files by removing
all closed transactions from them. This cleanup process uses a different directory ibdbc in which it writes
open transactions similar to the recovery program. That is, it reads IBDB files from ibdbw, gets rid of

4This might be similar to background fsck in recent FreeBSD 5 versions
5A simple hashing scheme could be used

Sendmail X, May 4, 2005, 11:44 109

closed transaction in the same way as the recovery function does and writes the open transactions into
a new file. After this has been safely committed to persistent storage, the IBDB files that have been
read can be removed. The recovery function needs to read in this case the files from ibdbw and ibdbc
to reconstruct all open transactions. The cleanup process should minimize the amount of data to read
at startup. Such a cleanup function may not be available in sendmail X.0, however, if the MTA runs
for a long time it may require a lot of disk space if there is not cleanup task. Question: is cleaning up
a recursive process? If so, how to accomplish that? In a simple approach two “versions” can be used
between which the cleanup task toggles, i.e., read from version 1 and write to version 2, then switch: read
from version 2 and write to version 1. Question: how easy is it to keep track of this?

An example of the missing data mentioned as problem 2 in the list of problems is the start time (of the
transaction) which is not recorded. This can be either taken in first approximation from the creation
time of the IBDB file, or the current time can be simply used (which might be off by a fair amount if the
system is down for a longer time, which, however, should not happen).

3.4.7.1 Cleaning up IBDB

Question: is there a way to avoid writing data when cleaning up IBDB? The cleanup task could “simply”
remove IBDB files that contain only references to closed transactions. We may not even have to read
any IBDB files at all since the data can be stored in IQDB, i.e., a reference to the IBDB logfile (sequence
number). This requires a reference counter for each IBDB logfile which contains the number of open
transactions (TA/RCPTs). When both reference counters reach zero the logfile can be removed. Note:
this violates the modularity: now IQDB is used to store data that is related to the implementation of
IBDB, i.e., both are tied together. Currently IQDB is fairly independent of the implementation of IBDB,
e.g., it does not know about sequence numbers. Now there must a way to return those numbers to
IBDB callers and they must be stored in IQDB. Moreover, there are functions that do not allow for a
simple way to do this, e.g., those which act on request lists. In this case it would be fairly complicated to
associate the IBDB data with the IQDB data. However, at the expense of memory consumption, the data
could be maintained by the IBDB module itself. In this case it behaves similar as the IBDB recovery
program, i.e., it stores open transactions (only a subset of data is necessary: identifier and sequence
number) in an internal (hash) table, and matches closed transactions against existing entries to remove
them. Periodically it can scan the table to find out which sequence numbers are still in use and remove
unused files.

A different (simpler?) approach to the problem is to use time-based cleanup. Open transactions that are
stored in IBDB are referenced by IQBD (at least with the current implementation) or AQ (entries which
are marked to come from IQDB). Periodically these entries can be scanned to find the oldest. All older
IBDB logfile can be removed. Note: there should be a correctness proof for this before it is implemented.

3.4.8 Deferred Envelope Database: Recipient Addresses

An interesting question is in which format recipient addresses are stored in the EDB, i.e., whether only
the original recipient address is stored or whether also the resolved format (DA, host, address, etc) is
stored too. If we use the resolved (expanded) format then we need to remove/invalidate those in case of
reconfigurations. These reconfigurations may change DAs or routing. A possible solution is to add a time
stamp to the resolved form. If that time stamp is older than the last reconfiguration then the AR must be
called again. However, the routing decision may have been based on maps which have changed inbetween,
hence this isn’t a complete solution. It may require a TTL based on the minimum of all entries in maps
used for the routing decision. Alternatively we can keep the resolved address “as-is” and do not care
about changes. For examples, some address resolution steps happen in sendmail 8 before the address

110 Sendmail X, May 4, 2005, 11:44

is stored in the queue, some happen afterwards. Examples for the former are alias expansion, which
certainly should not be done every time. So the only address resolution that happens during delivery are
DNS lookups (MX records, A/AAAA records), and those can be cached since they provide TTLs. We
might make the address resolution a clean two step process:

1. address resolution which is done only once before the (resolved) recipient address is stored in the
queue;

2. address resolution which is done during each delivery attempt and hence changes take effect almost
immediately for all (not just new) recipients.

It might be an interesting idea to provide a cache of address mappings. However, such a cache cannot
be simply for domains since it might be possible to provide per-address routing. The cache may be for
DNS (MX/A/AAAA) lookups nevertheless, i.e., a “partially” resolved address maps to a domain which
in turn maps to a list of destination hosts. This is fairly much what sendmail 8 does:

1. the address rewriting engine returns a triple mailer, host, and address.

2. The host part is mapped to list of destination hosts during “final” delivery via MX lookups (unless
suppressed via a flag or other measures).

Note that the host part can also be a list of (colon separated) hosts.

These two steps are clearly related to the two steps listed above.

Incomplete (as of now) summary: Advantages of storing resolved addresses:

• direct access, no need to call AR again unless address is “expired” or some reconfiguration happened.

Disadvantages of storing resolved addresses:

• harder to deal with configuration changes.

• more data must be stored and it is maybe replicated several times in DEFEDB.

If an address “expires” earlier than the computed “next time to try” then it probably is not useful to
store the resolved address in DEFEDB. However, if the scheduler decides to try the address before the
“next time to try”, e.g., because a host is available again, then the resolved address might still be useful.

See also Section 3.4.15 for further discussion of this problem.

We also need to mark addresses (similar to sendmail 8 internally) to denote their origin, i.e., original
recipient, expanded from alias (alias or list), etc.

3.4.9 Scheduler Algorithms

As described in Section 2.4.7 the scheduler must control the load it generates.

3.4.9.1 Slow Start and Connection Limit

One of the algorithms the scheduler should implement is “slow start”, i.e., when a connection to a new
host is created, only a certain number of initial connections must be made (“initial concurrency”). When

Sendmail X, May 4, 2005, 11:44 111

a session/transaction has been succesful, the number of allowed concurrent connections can be increased
(by one for each successful connection) until an upper limit (“maximum concurrency”) is reached. This
varying number of concurrency is usually called “window” (see TCP/IP). If a connection fails, the size
of the window is decreased until it reaches 0 in which the destination host is declared “dead” (for some
amount of time).

Question: which kind of failures should actually decrease the window size besides any kind of network
I/O errors? For example, a server may respond with 452 Too many connections but smX will not try
to interpret the text of the reply, only the reply code.

3.4.10 Data Structures

The queue manager uses several data structures to store the status of the system and the envelopes of
mails for which it has to schedule delivery. These are listed in the next sections.

3.4.10.1 Connection Cache Access

Question: are the connection caches indexed on host name or IP address? Problem: there is no 1-1
relation between host names and IP addresses, but an N-M relation. This causes problems for finding
recipients to send over an open connection. A recipient address is mapped to (a DA and) a destination
host, which is mapped to a list of MX records (host names) which in turn are mapped to IP addresses.
Since there can be multiple address records for a host name and multiple PTR records for an IP address,
we have a problem. The general problem is what to use as index for the connection caches. A smaller
problem results from the expiration (TTL) of DNS entries (all along the mapping: MX, A/AAAA,
and PTR records). Question: do load balancers further complicate this or can we ignore them for our
purposes? Possible solution: use host name as index, provide N-M mappings for host name to IP address
and vice versa. These mappings are provided by DNS. A simpler (but more restrictive solution) is to use
the IP address and the host name together as index (see Exim [Haz01]). Question: do we want our own
(simpler) DNS interface? We need some (asynchronous) DNS “helper” module anyway, maybe that can
add some caching and a useful API? We shouldn’t replicate caches too often due to the programming
and memory usage overhead. So how do we want to access the connection caches? If a host name maps
to several IP addresses, must it be a single machine? Does it matter wrt SMTP? Is a host down or an IP
address? It could be possible that some of the network interfaces are down, but the host still can receive
e-mail via another one.

So the QMGR to DA interface should provide an option to tell the DA to use a certain IP address for a
delivery attempt because the QMGR knows the DA has an open connection to it. Even though this is a
slight violation of the abstraction principle, the QMGR scheduled this delivery because of the connection
cache, so it seems better than letting the DA figuring out to use one of its open connection (by looking
up addresses etc).

3.4.10.2 Connection Reuse Problem

Problem: a connection (session) has certain attributes, e.g., STARTTLS, AUTH restrictions/requirements.
These session-specific options can depend on the host name or the IP address (in sendmail 8: TLS Srv:,
AuthInfo:). This makes it even more complicated to reuse a connection. If a host behaves differently
based on under which IP address it has been contacted, or if different requirements are specified for host
name/IP addresses then connection reuse is significantly more complicated. In the worst case this could
result in bounces that happen only in certain situations. It is certainly possible to document this behavior

112 Sendmail X, May 4, 2005, 11:44

on the sendmail side, but if the other (server) side has a connection information dependent behavior then
we have a problem.

A connection is made to an IP address, the server only knows the client IP address (plus port, plus maybe
ident information, the latter should not be used for anything important). SMTP doesn’t include a “Hi,
I would like to speak with X” greeting, but only a “Hi, this is Y” (which might be considered a design
flaw), so the server can’t change its behavior based on whom the client wants to speak to (which would
be useful for virtual hosting), but only based on the connection information (IP addresses, ports). Hence
when a connection is reused (same IP address) the server can’t change its behavior. Problem solved?
Not really, someone could impose wierd restrictions based on sender addresses. It seems to be necessary
to make this configurable (some external map/function can make the decision). This probably can be
achieved by imposing a transactions per session limit, see also Section 2.4.8.

Another solution might be to base connection reuse on host name and IP address6. This may restrict
connection reuse more than necessary, but it should avoid the potential problems. Maybe that should be
a compile time option? Make sure that the code does not depend completely on the type of the index.

There have been requests to perform SMTP AUTH based on the sender address. which of course in-
validates connection reuse. It’s one (almost valid) example for additional requirements for a connection.
It’s only almost valid, since SMTP AUTH between MTAs is not for user authentication, it is used to
authenticate the directly communicating parties. However, SMTP AUTH allows some kind of proxying
(authenticate as X, authorize to act as Y), which seems to be barely used.

Note: connection reuse requires that the delivery agent is the same, if two recipients resolve to different
delivery agents — even for the same IP address and hostname — then the connection will not be reused.
In some cases this seems rather useless7 hence the maximum flexibility would be reached by establishing
congruence classes of mailer with respect to connection reuse. If then not just the mailer definitions are
used to create those classes but also some connection attributes (see begin of this section), then we may
have found the right approach to connection reuse.

3.4.10.3 Data for DSN

See Section 2.4.6 for the different types of DSNs and the problems we may encounter. We need to store
(at least?) three different counters as explained in Section 2.4.6.1. DSNs can be requested individually
for each recipient. Hence the sum of these counters is less than or equal the number of original recipients.
Question: could it ever increase due to alias expansion? We could store the number of requested DSNs
for each type and then compare the number of generated DSNs against them. If any of the generated
DSN counters reached the requested counter we can schedule the DSN for delivery and hence we can be
sure (modulo the question above) that all DSNs of the same type can be merged into one. Question: do
we really need those counters? Or do we just generate a DSN whenever necessary and schedule it for
delivery (with some delay)? Then the DSN generation code could look whether there is already a DSN
generated and add the new one to it, as far as this is possible since the scheduler has to coalesce those
DSNs. Problem: there is extra text (the error description) that should be put into one mail. How to do
this? See also Section 2.4.6 about the question how to generate the body of DSNs.

3.4.10.4 Incoming Queue (INCEDB)

As explained in Section 2.4.1, the incoming queue consists of two parts: a restricted size cache in memory
and a backup on disk.

6This is what exim does.
7See sm8: there’s not much difference between the mailers relay and esmtp.

Sendmail X, May 4, 2005, 11:44 113

The incoming queue does not (need to) have the same amount of data as the SMTP servers. It only
stores data that is relevant to the QMGR. There is even less information in the data that is written to
disk when an entry has been received. The data in the RSC is not just needed for delivery, but also
during mail reception for policy decisions. In contrast, the backup data is only there to reconstruct the
incoming cache in case of a system crash, i.e., the mail has already been received, there will not be any
policy decisions about it. Hence the backup stores only the data that is required for delivery, not the
data that is necessary to make decision while the mail is being received. This of course means that a
reconstructed RSC does not contain the same (amount of) information as the original RSC.

The size of the cache defines the maximum number of concurrently open sessions and transactions in
the SMTP servers. Question: do we store transactions and recipients also in fixed size caches? We
certainly have to limit the size used for that data, which then acts as an additional restriction on the
number of connections, transactions, and recipients. It’s probably better to handle at least the recipients
dynamically instead of pre-allocating a fixed amount of memory. The amount of memory must be limited,
but it should be able to shrink if it has been expanded during a high volume phase (instead of having
some maximum reserved all the time). Since most of the information in the cache is not fixed size, we
need to dynamically allocate memory anyway. We maybe need some special kind of memory allocation
for this which works within a given allocated area (see also Section 3.16.6).

Each entry in the cache has one of the following two formats (maybe use two different RSC):

Session

session-id session identifier
client-host identification of connecting host

IP address, host name, ident
features features offered: AUTH, TLS, EXPN, ...
workarounds work around bugs in client (?)
transaction-id current transaction
reject-msg message to use for rejections (needed?)
auth AUTH information
starttls TLS information
n-bad-cmds number of bad SMTP commands
n-transactions number of transactions
n-rcpts total number of recipients
n-bad-rcpts number of bad recipients

Transaction:

transaction-id transaction identifier
start-time date/time of transaction
mail address, arguments (decoded?)
n-rcpts number of recipients
rcpt-list addresses, arguments (decoded?)
cdb-id CDB identifier (obtained from cdb?)
msg-size message size
n-bad-cmds number of bad SMTP commands (necessary?)
n-rcpts number of valid recipients
n-bad-rcpts number of bad recipients
session-id (pointer back to) session
statistics:
end-time end of transaction

If recipients addresses are expanded while in the INCEDB, we need to store the number of original

114 Sendmail X, May 4, 2005, 11:44

recipients too.

Backup on disk: those entries have a different format than the in-memory version. The entries must be
clearly marked as to what they are: transaction sender or recipient.

Sender (transaction):

transaction-id transaction identifier
start-time start time of transaction
sender-spec address incl. ESMTP extensions
cdb-id CDB identifier (obtained from cdb?)
n-rcpts reference count for cdb-id

Notice: the sender information is written to disk after all recipients have been received, i.e., when DATA
is received, because it contains a counter of the recipients (reference count).

ESMTP sender extensions (substructure of the structure above)

size size of mail content (SIZE=)
bodytype type of body
envid envelope id
ret DSN return information (FULL, HDRS)
auth AUTH parameter
by Deliverby specification

Per recipient (transaction):

transaction-id transaction identifier
rcpt-spec address incl. ESMTP extensions

and maybe a unique id (per session/transaction?)

ESMTP Recipient extensions (substructure of the structure above):

notify DSN parameters (SUCCESS, FAILURE, WARNING)
orcpt original recipient

The data for sender and recipient should be put into a data structure such that all relevant data is kept
together. That structure must contain the data that must be kept in (almost) all queues.

3.4.10.5 Active Queue (ACTEDB, AQ)

The active queue needs different types of entries, hence it might be implemented as two RSCs, i.e., one
for senders and one for recipients8. It could also be only one RSC if the “typed” variant is used (see
4.3.5.1).

Notice: there are two types of transaction records:

1. The (incoming, SMTPS) transaction.

2. The (outgoing, DA) transaction.

Since sendmail X performs scheduling per recipient (see Section 2.1.5, item 5), not per (incoming) trans-
action, those two transactions do not need to match. The outgoing (DA) transaction context is not stored

8Currently it is implemented as two linked lists, one each for transactions and recipients.

Sendmail X, May 4, 2005, 11:44 115

directly in AQ, it is part of the QMGR - DA interface, see 3.4.10.12. However, the recipient data in AQ
has data that refers to an outgoing transaction as described below.

The AQ context itself contains some summary data and the data structures necessary to access transac-
tions and recipients:

max-entries maximum number of entries
limit current limit on number of entries
entries current number of entries
t-da entries being delivered
nextrun if set: don’t run scheduler before this time
tas access to transactions
rcpts access to recipients

There should probably be more specific counters: total number of recipients, number of recipients being
delivered, number of recipients waiting for AR, number of recipients ready to be scheduled, and total
number of transactions.

The incoming transaction context contains at least the following fields:

transaction-id SMTPS transaction identifier
sender-spec address (see INCEDB)
cdb-id CDB identifier
from-queue from which queue does this entry come? (deferred or incoming)
counters several counters to keep track of delivery status

For ACTEDB we only need to know how many recipients are referenced by this transaction in the DB
itself. That is, when we put a new recipient into ACTEDB, then we need to have the sender (transaction)
context in it. If it is not yet in the queue, then we need to get it (from INCEDB or ACTEDB) and initialize
its counter to one. For each added recipient the counter is incremented by one, when the status of a
recipient delivery attempt is returned from a DA, the counter is decremented by one and the recipient is
taken care of in the appropriate way. See also 2.4.3.4. However, because AQ should contain all necessary
data to update DEFEDB it must also store the overall counters, e.g., how many recipients are in the
system in total (not just in AQ).

Note: the delivery status for a transaction is not stored in DEFEDB since each delivery attempt in theory
may lead to a different transaction, i.e., a DA transaction is not stored in DEFEDB.

The recipient context in AQ contains at least the following elements:

SMTPS transaction-id SMTPS transaction identifier
DA transaction-id DA transaction identifier
rcpt-spec address (see INCEDB)
rcpt-internal delivery tuple (DA, host, address)
from-queue from which queue does this entry come?
status not yet scheduled, being delivered, (temp) failure, ...
SMTPS-TA recipient from same SMTPS transaction
DA-TA recipient in same DA transaction
DEST recipient for same destination

The last three entries are links to access related recipients. These are used to group recipients based on
the usual criteria, i.e., same SMTPS transaction, same delivery transaction, same next hop. Maybe this
data can also be stored in DEFEDB to pull in a set of recipients that belongs together instead of searching
during each scheduling attempt for the right recipients that can be grouped into a single transaction.
Questions: how to do this? Is it worth it?

116 Sendmail X, May 4, 2005, 11:44

The internal recipient format is the resolved address returned by the AR. Its format is explained in
Section 3.6.3.1.

As explained in 3.4.4, several access methods are required for the various EDBs, those for AQ are:

1. The unique identifier for entries in AQ is the SMTPS transaction identifier (plus recipient index for
recipients).

2. Another (non-unique) key is the DA transaction identifier, which is required to associate DA results
with entries in AQ; as explained in Section 3.4.10.12 the DA status cache stores also DA and SMTPS
transaction identifier.

3. The DA and next hop are used as key (maybe combined into one) to access a list of recipient entries
which are going to be delivered to the same destination (see Section 2.4.4.8: AQRD, 3). This data
access method can also be used to easily control the number of allowed concurrent connections (see
also 3.4.9.1): when that number is reached, no entry in the list is scheduled anymore, i.e., the entire
list is skipped, which is simpler than checking for each recipient whether the limit has been reached.

The key described in item 3 refers to another data structure which summarizes the entries. This data
structure is the “head” of the DEST list:

DA Delivery Agent
next-hop Host (destination/next hop) to which to connect for delivery
todo-entries Number of entries in todo-list
todo-list Link to recipients which still need to be sent
busy-entries Number of entries in busy-list
busy-list Link to recipients which are being sent

The number of waiting transactions (todo-entries) can be used to determine whether to keep a session
open or close it.

Question: is it really useful to have a busy list? What’s the purpose of that list, which algorithms in the
scheduler need this access method? The number of entries in the busy list is somehow useful if it were
the number of open transactions or sessions, however, this is the number of recipients which does not
have a useful relation to transactions/sessions.

Note: when a recipient is added to AQ it may not be in these destination queues because its next hop
has not yet been determined, i.e., the address resolver needs to be called first. Those entries must be
accessible via other means, e.g., their unique (recipient) identifier (see item 1 above). It might also be
possible (for consistency) to have another queue with a bogus destination (e.g., a reserved DA value or IP
address) which contains the entries whose destination addresses have not yet been resolved. Section 3.4.4
explains some of the problems with chosing indices to access AQ (and other EDBs), there is an additional
problem for AQRD: if the connection limit for an IP address is reached, the scheduler will skip recipients
for that destination. However, the recipient may have other destinations with the same priority whose
limit is not yet reached. Either the system relies on the randomization of those same priority destinations
(real randomization in turn causes problems for session reuse), or some better access methods need to be
used. It might be useful in certain cases to look through the recipient destinations nevertheless (which
defeats the advantage of this organization to easily skip entries that cannot be scheduled due to connection
limits).

There might be yet another data structure which provides a summary of the entries in DEFEDB of this
kind. That data structure can be used to decide whether to pull in recipients from DEFEDB to deliver
them over an open connection.

Sendmail X, May 4, 2005, 11:44 117

Figure 3.1: Example of Active Queue

3.4.10.5.1 Cleaning up AQ The QMGR/scheduler must also remove entries from AQ that are too
long in the queue, either because AR didn’t respond or because a delivery attempt failed and the DA
didn’t tell QMGR about it (see Section 2.4.4.5). Question: what is an efficient way to do this? Should
those entries also be in some list, organized in the order of timeout? Then the scheduler (or some other
module) just needs to check the head of the list (and only needs to wake up if that timeout is actually
reached). When an item is sent to AR or a DA then it must be sorted into that list.

3.4.10.6 Deferred Queue (DEFEDB)

The entries must be clearly marked as to what they are: transaction sender or recipient.

118 Sendmail X, May 4, 2005, 11:44

Sender:

transaction-id transaction identifier
start-time date/time mail was received
sender-spec address (see INCEDB)
cdb-id CDB identifier
rcpts-left reference count for cdb-id
rcpts-tried counter for “tried” recipients

rcpts-left refers to the number of recipients which somehow still require a delivery, whether to the recipient
address or a DSN back to the sender. rcpts-tried is used to determine when to send a DSN (if requested).
It might be useful to have counters for the three different delivery results: ok, temporary/permanent
failure:

rcpts-total total number of recipients
rcpts-left number of recipients left
rcpts-temp-fail number of recipients which temporary failed
rcpts-perm-fail number of recipients which permanently failed
rcpts-succ recipients which have been delivered

In case of a DELAY DSN request we may need yet another counter. See also Sections 2.4.6 and 3.4.10.3.

rcpts-total is at least useful for statistics (logging); one of rcpts-succ and rcpts-total may be omitted.
The invariances are:

rcpts total = rcpts temp fail + rcpts perm fail + rcpts succ

rcpts-total also counts the bounces that have been generated. It is never decremented.

rcpts left = rcpts temp fail + rcpts perm fail

Notice: these counters must be only changed if the delivery status of a recipient changes. For example, if
a recipient was previously undelivered and now a delivery caused a temporary failure, then rcpts-temp-fail
is increased. However, if a recipient previously caused a temporary failure and now a delivery failed again
temporarily, then rcpts-temp-fail is unchanged. This obviously requires to keep the last delivery status
for each recipients (see below).

Recipient:

transaction-id transaction identifier
rcpt-spec address (see INCEDB)
rcpt-internal delivery tuple (DA, host, address, timestamp)
d-stat delivery status (why is rcpt in deferred queue)
schedule data relevant for delivery scheduling, e.g.,

last-try: last time delivery has been attempted
next-try: time for next delivery attempt

d-stat must contain sufficient data for a DSN, i.e.:

act-rcpt actual recipient (?)
orig-rcpt original recipient (stored in rcpt-spec, see above)
final-rcpt final recipient (from RCPT command)
DSN-status extended delivery status code
remote-mta remote MTA
diagnostic-code actual SMTP code from other side (complete reply)
last-attempt data/time of last attempt
will-retry for temporary failure: estimated final delivery time

Sendmail X, May 4, 2005, 11:44 119

The internal recipient format is the resolved address returned by the AR. Its format is explained in
Section 3.6.3.1. Question: do we really want to store rcpt-internal in DEFEDB? See Section 3.4.8 for a
discussion. The timestamp for the delivery tuple is necessary as explained in the same section.

Question: which kind of delivery timestamp is better: last time a delivery has been attempted or time
for next delivery attempt? We probably need both (last-try for DSN, next-try for scheduling).

3.4.10.7 Deferred Queue Cache (EDBC)

EDBC implements a sorted list based on the “next time to try”. with references to recipient identifiers
(which are the main indices to access DEFEDB). “Next time to try” is not a unique identifier hence this
structure must be aware of that, e.g., when adding or removing entries.

3.4.10.8 Connection Cache (incoming)

This cache is accessed via IP addresses and maybe hostnames. It is used to check whether an incoming
connection (to SMTPS) is allowed (see also Section 2.4.7).

open-conn number of currently open connections
open-conn-X number of open connections over last X seconds

(probably for X in 60, 120, 180, ...)
trans-X number of performed transactions over last X seconds
rcpts-X number of recipients over last X seconds
fail-X number of SMTP failures over last X seconds
last-conn time of last connection
last-state status of last connection, see 3.4.10.9

Notice: statistics must be kept in even intervals, otherwise there is no way to cycle them as time goes on.

Question: do we use a RSC for this? If so, how do we handle the case when the RSC is full? Just
throwing out the least recently used connection information doesn’t seem appropriate.

3.4.10.9 Connection Status (incoming)

Question: what kind of status do we want to store here? Whether the connection was succesfull, or
aborted by the sender? Or whether it acted strange, e.g., caused SMTP violations? Maybe performance
related data? For example, number of recipients, number of transactions, throughput, and latency.

3.4.10.10 Connection Cache (outgoing) Connections

As explained in Section 2.4.4.8, there are two different connection caches for outgoing connections: one for
currently open connections (OCC, 1) and one for previously made (tried) connections (DCC, 2). These
two connection caches are described in the following two subsections.

Note: it might be possible to merge these two caches into one if the proper implementation, such as a
restricted size cache (see Section 3.13.10), is chosen.

3.4.10.10.1 Connection Cache for currently open (outgoing) Connections This is OCC (see
Section 2.4.4.8: 1) for the currently open (outgoing) connections.

120 Sendmail X, May 4, 2005, 11:44

OCC helps the scheduler to perform its operation, it contains summary information (and hence could be
gathered from the AQ/DA data by going through the appropriate entries9).

open-conn number of currently open connections
open-conn-X number of open connections over last X seconds

(probably for X in 60, 120, 180, ...)
trans-X number of performed transactions over last X seconds
rcpts-X number of recipients over last X seconds
fail-X number of failures over last X seconds
performance data related to performance, see 3.13.8
first-conn time of first connection
last-conn time of last connection
last-update time of last status update
last-state status of last connection, see 3.4.10.11
initial-conc initial concurrency value
max-conc maximum concurrency limit
cur-conc current concurrency limit (“window”)

This connection cache stores only information about current connections. The connection cache also
stores the time of the last connection. Question: do we need to store a list of those times, e.g., the last
three? We can use these times to decide when a new connection attempt should be made (if the last
connection failed). For this we need at least the last connection time and the time interval to the previous
attempt. If we use exponential backup we need only those two values. For more sophisticated methods
(which?) we need probably more time stamps.

It is not yet clear whether the open connection cache actually needs the values listed above, especially
those for “over last X seconds”. Unless the scheduler actually needs them, they can be omitted (they
might be useful for logging or statistics). Instead, the counters may be for the entire “lifetime” of the
connection cache entry; those counters can be used to implement limits for the total number of sessions,
transactions, recipients, etc.

The last three values are used to implement the slow-start algorithm, see 3.4.9.1. The time of the last
status update can be used to expire the “host is dead” marking, i.e., cur-conc equal zero.

Question: which times do we actually need: the time of the last connection or last status update? If
a connection is successful, but the session takes very long, those times may differ substantially. The
time of the last status update is used to expire a “host is dead” marking (as explained in the previous
paragraph). The time of the last connection might be used to expire an entry if something went wrong
with the delivery agent, e.g., it “died” in some way such that QMGR does not notice it and hence cannot
clean up properly. In this case the expiration timeout should depend on the message size, obviously it
takes much longer to deliver a message of several MB than of a few KB. The timeout could be set as the
some of a basic timeout (60s?) and the message size divided by the transfer rate, where transfer rate is
an option set in a configuration file (and maybe checked against the “performance” values for this entry).

3.4.10.10.2 Connection Cache for previously made Connections This is DCC (see Section
2.4.4.8: 2) for previously open connections. It contains similar data as OCC but only for connections
which are not open anymore.

9This is the common tradeoff between storage and computation.

Sendmail X, May 4, 2005, 11:44 121

open-conn-X number of open connections over last X seconds
(probably for X in 60, 120, 180, ...)

trans-X number of performed transactions over last X seconds
rcpts-X number of recipients over last X seconds
fail-X number of failures over last X seconds
performance data related to performance, see 3.13.8
last-conn time of last connection
last-update time of last status update
last-state status of last connection, see 3.4.10.11

The connection cache also stores the time of the last connection. Question: do we need to store a list
of those times, e.g., the last three? We can use these times to decide when a new connection attempt
should be made (if the last connection failed). For this we need at least the last connection time and the
time interval to the previous attempt. If we use exponential backup we need only those two values. For
more sophisticated methods (which?) we need probably more time stamps.

This connection cache can be optimized to ignore some recent connections at the expense of being limited
in size. For example, see the BSD inetd(8) ([ine]) implementation which uses a fixed-size hash array to
store recent connections. If there are too many connections, some entries are simply overwritten (least
recent entry will be replaced).

3.4.10.11 Connection Status (outgoing)

See Section 3.8.4.1 for a delivery status that must be stored in the appropriate entries. Question: where
do we store the status? We store it on a per-recipient basis in the EDB and on a per-host (or whatever
the index will be) basis in the connection cache. The delivery status will be only stored in the connection
cache if it pertains to the connection. For example, “Recipient unknown” is not stored in that cache. The
delivery status should reflect this distinction easily. Question: is it useful to create groups of recipients,
i.e., group those recipients within an envelope that are sent to the same host via the same DA? This
might be useful to schedule delivery, but should we create extra data types/entries for this?

It must also be stored whether currently a connection attempt is made. This could be denoted as one
open connection and status equal “Opening” (or something similar).

3.4.10.12 DA Status Cache

Question: how much should the QMGR control (know about) the status of the various DAs? Should
it know exactly how many are active, how many are free? That seems to be useful for scheduling, e.g.,
it doesn’t make sense to send a delivery task to a DA which is completely busy and unable to make
the delivery attempt “now”, i.e., before another one is finished. Hence we need another data structure
that keeps track of each available DA (each “thread” in it, however, this should be abstracted out; all
the QMGR needs to know is how many DAs are available and what they are doing, i.e., whether they
are busy, idle, or free10). The data might be hierarchically organized, e.g., if one DA of a certain type
can offer multiple incarnations, then the features of the DA should be listed in one structure and the
current status of the “threads” in a field (or list or something otherwise appropriate). Some statistics
need to be stored too which can be used to implement certain restrictions, e.g., limit the number of
transactions/recipients per session, or the time a connection is open.

10free: no session active; idle: session open, but no transaction; busy: session open, transaction active.

122 Sendmail X, May 4, 2005, 11:44

status busy/free (other?)
DA session-id DA session identifier
DA transaction-id DA transaction identifier
SMTPS transaction-id SMTPS transaction identifier
server-host identification of server: IP address, host name
n-trans number of performed transactions
n-rcpts number of recipients
n-fail number of failures
performance data related to performance, see 3.13.8
opened time of connection open
last-conn time of last connection

Question: what do we use as index to access this structure? We could use a simple integer DA-idx (0
to max threads-1), i.e., a fixed size array. Then however we should also use that value as an identifier
for communication between QMGR and DA, otherwise we still have to search for session/transaction id.
Nevertheless, using an integer might give us the wrong idea about the level of control of the QMGR over
the DA, i.e., we shouldn’t assume that DA-idx is actually useful as an index in the DA itself.

Notice: this is the only place where we store information about a DA session, the active queue contains
only mail and recipient data. Hence we may have to store more information here. This data structure
is also used for communication between QMGR and DAs; it associates results coming back from DAs
(which use DA session/transaction ids) with the data in AQ (which use SMTPS session/transaction ids).

3.4.10.13 Load Control Data Structures

As explained in Section 2.4.7 the QMGR must store information about the local load of the system.
Question: how to represent this?

One simple approach is to check how much storage resources are used, e.g., how full are AQ, IQDB, etc,
as well as disk space usage. However, that does not take into account the “load” of the system, i.e., CPU,
I/O, etc.

3.4.10.13.1 Disk Space Usage Various DBs are stored on disk: CDB, DEFEDB, and IBDB. The
latter two are completely under control of QMGR, the former is used by SMTPS (write), DA (read),
and QMGR (unlink). The amount of available disk can be stored in a data structure and updated on
each operation that influences it. Additionally system calls can be made periodically to reflect changes to
the disk space by other processes. About CDB: SMTPS should pass the size of a CDB entry to QMGR
which then can be used when a transaction is accepted and when all recipients for a transaction have
been delivered and hence the CDB entry is removed.

sendmail 8.12 uses a data structure to associate queue directories with disk space (“partitions”). A similar
structure can be used for smX.

struct filesys_S {
dev_t fs_dev; /* unique device id */
long fs_kbfree; /* KB free */
long fs_blksize; /* block size, in bytes */
time_T fs_lastupdate; /* last time fs_kbfree was updated */
const char *fs_path; /* some path in the FS */

};

Sendmail X, May 4, 2005, 11:44 123

3.4.10.13.2 Cache Usage For internal (memory resident) DBs it is straightforward to use the num-
ber of entries in the DB as a measure for its usage. This number should be expressed as percentage to
be independent of the actual size chosen at runtime. Hence the actual usage of a DB can be represented
as a single number whose value ranges from 0 to 100.

3.4.11 Database and Cache APIs

See Section 3.13.3 for more information about envelope databases, esp. APIs.

3.4.12 QMGR - SMTPS API

Notice: these functions are “called” from SMTPS (usually via a message), hence they do not have a
corresponding function that returns the result. The functions may internally wait for the results of
others, but they will return the result “directly” to the caller, i.e., via a notification mechanism. The
other side (SMTPS) may use an asynchronous API (invoke function, ask for result) as explained in Section
3.1.1.

• qmgr smtps open(IN smtps-info, OUT status): a new SMTPS is started, give information about
this server to the QMGR.

• qmgr session open(IN connection-info, IN session-id, OUT status): create a new SMTP session in
the incoming cache (API see Section 3.13.4). This may reject a connection based on policy (e.g.,
too many connections open, load too high).

• qmgr session status(IN connection-info, IN session-id, IN session-status, OUT status): update ses-
sion status, e.g., STARTTLS, AUTH.

• qmgr trans open(IN session-id, IN sender-env-info, IN trans-id, OUT status): create a new envelope
(done on MAIL command).

• qmgr rcpt add(IN trans-id, IN rcpt-env-info, OUT status): add a new recipient (RCPT command).
Maybe this should also be allowed to add a list of recipients?

• qmgr cdb(IN trans-id, IN cdb-id, OUT status): add cdb identifier (BODY command). This could
be merged with the transaction close, unless we want to allow for interleaved delivery.

• qmgr trans close(IN trans-id, IN cdb-id, OUT status): close a transaction (cdb-id is optional if
already supplied earlier on). At this moment the QMGR can schedule the recipients of this envelope
for delivery.

• qmgr trans discard(IN trans-id, OUT status): discard envelope (connection has been aborted some-
how: RSET, EHLO, connection error on lower level).

• qmgr session close(IN session-id, OUT status): close a session.

• qmgr smtps close(IN smtps-info, OUT status): a SMTPS shuts down.

Maybe qmgr trans close() and qmgr trans discard() can be merged into one function which receives an-
other parameter: qmgr trans close(IN trans-id, IN cdb-id, IN smtps-status, OUT status) that determines
whether SMTPS has accepted so mail so far; the QMGR can still return an error.

124 Sendmail X, May 4, 2005, 11:44

3.4.13 QMGR - First Level Scheduler API

See Section 2.4.4.2 for a description of the tasks of the first level scheduler. This part of the QMGR adds
entries to the active queue, whose API is described in Section 3.13.5.

qmgr fl getentries(IN actq, IN incq, IN defq, IN number, IN policy, OUT status) get up to a certain
number of entries for the active queue.

qmgr fl get inc(IN actq, IN incq, IN number, IN policy, OUT status) get up to a certain number of entries
for the active queue from the incoming queue.

qmgr fl get def(IN actq, IN defq, IN number, IN policy, OUT status) get up to a certain number of entries
for the active queue from the deferred queue.

qmgr fl get match(IN actq, IN number, IN criteria, OUT status) get some entries for the active queue
from the deferred queue that match some criteria, e.g., items on hold with a matching hold message, or
items for a certain domain. We may want different functions here depending on what a user can request.
But we also want a generic function that can get entries depending on some conditions that can fairly
freely specified.

3.4.14 QMGR - Delivery Scheduler API

See Section 2.4.4.3 for a description of the tasks of the second level (micro) scheduler. This part of the
QMGR controls the active queue, whose API is described in Section 3.13.5. It uses the first level scheduler
to fill the active queue whenever necessary, and the DA API (3.4.5.1) to request actual deliveries.

Question: which additional functions do we need/want here?

Whenever a delivery attempt has been made, the status will be collected and an appropriate update in
the main (or incoming) queue must be made.

Common to all cases is the handling of DSNs. If a particular DSN is requested and the conditions for that
DSN are fulfilled, then the recipient is added to the DSN for that message (based on the transaction id of
the received message). If there is no DSN entry yet, then it will be created. If all entries for the particular
DSN have been tried, “release” (schedule) the DSN to be sent. See also Section 2.4.6. Question: do DSN
cause new entries in the main queue or do we just change the type of the recipient entry?

1. Successful delivery: Unless a SUCCESS DSN is requested the recipient can be removed from the
queue and the reference counter in the sender entry is decremented. If that reference counter reaches
zero, the sender entry is removed too.

2. Permanent delivery failure: If no FAILURE DSN is requested the recipient can be removed from
the queue and the reference counter in the sender entry is decremented. If that reference counter
reaches zero, the sender entry is removed too.

3. Temporary delivery failure: Check the timeouts for this entry:

(a) Warning: if no DELAY DSN is requested nothing extra needs to be done.

(b) Return: similar to permanent delivery failure (only the error code in the DSN is different).

If the entry will be tried later on, i.e., the queue return timeout isn’t reached, then determine the
next time for retry. Update the entry in the deferred queue (this may require moving the entry
from the incoming cache to the deferred queue).

Sendmail X, May 4, 2005, 11:44 125

3.4.15 Interface to AR

The AR API is briefly described in Section 3.6.3. An open question is when the QMGR should call the
AR. There are at least the following possibilities:

1. for incoming mail (from SMTPS):

(a) as soon as the recipient is received by the QMGR it can send it off to the AR to get a resolved
address. This have the advantage that address resolving can be handled concurrently with
mail receival. However, it might make handling of the recipient address state a little bit more
complicated since we now have to keep track whether the address has been resolved and we
have to decide whether an unresolved address can be moved from INCEDB to ACTEDB, in
which case the returned information from the AR must be associated with the correct EDB.
Additionally, the data structure used for recipient addresses in INCEDB must accommodate
for resolved addresses too.

(b) the address can be resolved when it is placed in the ACTEDB. If the address resolution takes
a long time, then those entries in the ACTEDB are not really active and they just take up
space in that EDB without being ready for scheduling.

2. for deferred mails (from DEFEDB):

(a) the resolved addresses are stored in the DEFEDB.

(b) the address can be resolved (again) when it is placed in the ACTEDB. The address resolution
depends on data that may change over time; see Section 3.13.6. Moreover, we may not want
to store all necessary delivery information in DEFEDB, but only the recipient address itself,
see Section 3.4.10.6.

3.4.15.1 Aliases

The SMAR may expand aliases in which case it can return a list of (resolved) addresses. The QMGR
must make sure that the new addresses are either safely stored in persistent storage or that the operation
is repeatable. The simple approach is to store the new addresses in DEFEDB after they have been
received from SMAR and remove the address which caused the expansion from the DB in which it is
stored11 (IBDB or DEFEDB). If the new addresses are stored only in AQ, then the handling becomes
complicated due to potential delivery problems and crashes before all expanded addresses have been tried.
The expansion would be done in a two step process:

1. Add all new addresses to AQ (which may fail due to space restrictions, in which case all addresses
should be written to DEFEDB) and mark the original addresses as “expanded” and the new ad-
dresses as “is alias of” with a reference to the original address.

2. Try delivery for all new addresses. After all of them have been tried, mark the original addresses
as “replaced”.

Note: the design requires that all data in AQ can be removed (lost) at any time without losing mail.

If QMGR is terminated between step one and two, the alias expansion will be repeated the next time
the (original) address is selected for delivery. If QMGR is terminated during step two, i.e., the delivery
of expanded addresses, then this approach may result in multiple deliveries to the same recipient(s).

11Unless it is required for other purposes, e.g., logging or bounces.

126 Sendmail X, May 4, 2005, 11:44

Note: the current functions to update the recipient status after a delivery attempt do not yet deal with
recipients resulting from an alias expansion.

For 1-1 aliases it seems simplest to replace the current address with the new one, which avoids most of
the problems mentioned above12.

In a first step 1-n (n > 1) alias expansion should be done by writing all data to DEFEDB. Later on
optimizations can be implemented, e.g., if n is small, then the expansion is done in AQ only.

3.4.16 Updating Data in Queues after a Delivery Attempt

When a delivery attempt (see 4d in Section 2.4.3.2) has been made, the recipient must be taken care of
in the appropriate way. Note that a delivery attempt may fail in different stages (see Section 2.4.3.1),
and hence updating the status of a recipient can be done from different parts of QMGR:

1. The address resolver may return an error. This should happen rarely. Updating a recipient status
can be a costly operation because it involves updating information on persistent storage, e.g.,
DEFEDB and maybe IBDB. Instead of doing this each time a recipient address resolution causes
an error, the error is simply “recorded” in the recipient data structure (in AQ). Either the scheduler
or a cleanup task will take care of it when it comes along such an entry. This is more likely to put
several status updates together and hence they can be handled in a single transaction. Alternatively
the data may be stored in request lists which are taken care of when a certain size or a timeout is
exceeded.

2. A delivery agent may return an error. This is the “usual” case because hereafter the recipient status
must be updated anyway.

3. An entry is too long in the active queue. This may happen if either the address resolver or the
delivery agent malfunction and do not return a result. A cleanup task must take care of this.

See Section 2.4.3.4 for a description what needs to be done after a delivery attempt has been made. As
mentioned there it is recommended to perform the update for a delivery attempt in one (DB) transaction
to minimize the amount of I/O and to maintain consistency. To achieve this, request lists are created
which contain the changes that should be made. Change requests are appended to the list when the
status for recipients are updated. After all changes (for one transaction or one scheduler run) have been
made, the changes are committed to persistent storage. Updates to DEFEDB are made before updates
to INCEDB (as explained in Section 2.4.1), that is, first the request list for DEFEDB is committed and
if that succeeded, the request list of IBDB is committed to disk.

Here’s a more detailled version of the description in Section 2.4.3.4 but only for the case that no special
DSN is requested, i.e., without DSN support (RFC 1894). After a delivery attempt, the recipient is
removed from ACTEDB and

1. after a successful delivery attempt the recipient must be removed and the counters in the transaction
context must be updated. When all references to a CDB entry have been removed, then that entry
must be removed too.

(a) If it is from INCEDB, remove the entry from INCEDB, i.e., IBDB and possibly IQDB if the
entry is not removed earlier on.

12Again, it might be necessary to keep the original address.

Sendmail X, May 4, 2005, 11:44 127

(b) If the entry is from DEFEDB, remove the recipient entry from it and update the transac-
tion context in DEFEDB too (its counters have been changed). This should be done as one
transaction to maintain consistency.

2. for a temporary delivery failure

(a) the recipient is moved to DEFEDB if it was from INCEDB before.

(b) otherwise the status of the recipient in DEFEDB is updated.

If the recipient is too long in the queue, then it is treated like a permanent delivery failure (see
below, item 3).

3. for a permanent delivery failure the recipient causes a DSN unless it is a double bounce, in which
case the recipient is removed (after logging the fact), i.e., item 1b applies. If the recipient is already
a DSN, then a double bounce is generated. Moreover,

(a) the recipient is moved to DEFEDB if it was from INCEDB before see item 2a above.

(b) otherwise the status of the recipient address in DEFEDB is updated.

3.4.16.1 Preserving Order of Updates

Updates to DEFEDB are partially ordered. If multiple threads prepare updates for DEFEDB, they may
contain changes for the same transaction(s). The order of updates of the transaction(s) in AQ must be
reflected in the order of updates in DEFEDB. There can either be a strict order or a partial order, i.e.,
two updates need to be done only in a certain order if they are for the same transaction. To simplify
implementation, a strict order is preserved13.

Each function that needs to update DEFEDB creates a “request list”, i.e., a list of items that need to be
committed to DEFEDB. This has two advantages over updating each entry individually:

1. The update is done as one transaction, i.e., atomically.

2. Only one transaction needs to be done instead of several smaller ones. Since DEFEDB changes
requires disk I/O it is useful to bundle several requests into one.

3.4.16.1.1 Preserving Order of Updates: Approach 1 The first approach (more flexible and
more complicated than approach 2) is to enforce just an ordering on writing data to DEFEDB by: asking
for a “sequence number” and enforcing the ordering by that sequence number in the write routine.

Algorithm:

Use a mutex, a condition variable, and two counters: first and last.

Initialize first and last to 0.

Invariants: first ≤ last. Number of entries: 0 if first = last = 0 otherwise last − first + 1, i.e., there
are no requests iff first = last = 0.

Resetting first and last to 0 is done to minimize the chance for an overflow.

Get an entry:

13For now; this can be relaxed later on, which complicates the algorithm however. Hence it should be determined first
whether strict ordering causes a bottleneck.

128 Sendmail X, May 4, 2005, 11:44

lock(mutex)
if (first == 0)
first = last = 1
n = 1

else
n = ++last

unlock(mutex)
return n

To write a request list:

lock(mutex)
while (number != first)
cond_wait(cond, mutex)

unlock(mutex)

lock(write_mutex)
... write list ...
unlock(write_mutex)

lock(mutex)
assert(number == first)
assert(first <= last)
if (first < last)
++first
signal(cond)

else
first = last = 0

unlock(mutex)

Note: there is currently no absolute prevention of overflowing last. If this needs to be done, then last
would be checked in the function that increases it and if it hits an upper limit, it would wait on a condition
variable. The signalling would be done in the function that increases first: if it reaches the upper limit,
then it would signal the waiting process.

3.4.16.1.2 Preserving Order of Updates: Approach 2 A simpler way to solve the problem is
to lock DEFEDB and AQ, and write changes to DEFEDB before it is unlocked. Even though that
keeps DEFEDB locked while making changes to AQ (which prevents only a reader process from accessing
DEFEDB even though it might be possible to allow that otherwise), this seems like the simplest approach
to solve the problem.

3.4.17 Load Control Functionality

According to Section 2.4.7 QMGR must control the local load of the system, Section 3.4.10.13 describes
the possible data structures for this purpose. In this section the functionality will be specified.

An MTS has some modules that produce data (SMTP servers) and some which consume data (SMTP
clients, delivery agents in general). The simplest approach to control how much storage is needed is to
regulate the producers such that they do not exceed the available storage capacities. To accomplish this
two thresholds are introduced for each resource:

Sendmail X, May 4, 2005, 11:44 129

1. an upper threshold Tu: if this is exceeded then the producers are throttled or stopped,

2. a lower threshold Tl: if the actual value falls below the lower threshold then the producers are
enabled again.

To allow for a fine grained control the capacity C (range: 0 . . . 100) of the producers should be a regulated
on a sliding scale proportional to the actual value U if it is between the lower and upper threshold.
Capacity C is the inverse of the resource usage R, i.e., C = 100−R.

if U ≥ Tu then C := 0 else if U ≤ Tl then C := 100 else C := 100 ∗ (Tu − U)/(Tu − Tl)

or

if U ≥ Tu then R := 100 else if U ≤ Tl then R := 0 else R := 100 ∗ (U − Tl)/(Tu − Tl)

For multiple values a loop can be used which is stopped as soon as one value exceeds its upper threshold.
Computing the capacity can be done as follows:

S := 0; C := 100; N := 0

for each U do
if U ≥ Tu(U) then C := 0; break;
else if U ≤ Tl(U) then C := 100;
else C := 100 ∗ (Tu(U)− U)/(Tu(U)− Tl(U));
C := S + C;N := N + 1
done
if C > 0 then C := S/N

Computing the resource usage is done in the corresponding way:

S := 0; R := 0; N := 0

for each U do
if U ≥ Tu(U) then R := 100; break;
else if U > Tl(U) then S := S + 100 ∗ (U − Tl(U))/(Tu(U)− Tl(U));
N := N + 1
done
if R < 100 then R := S/N

Notes:

1. The second algorithm is slightly optimized: if U ≤ Tl(U) then R is zero, hence it doesn’t need to
be added to the sum S.

2. these algorithms compute the arithmetic mean whereas the geometric mean gives better results.
However, computing the latter requires floating point arithmetic (it’s the n-th cube of the product
of the values) and this does not seem to be worth the effort.

3.4.17.1 Load Control Functionality: Throttling

In general, whenever a resource is used, it must be checked whether it is exhausted. For example,
whenever an item is added to a DB the result value is checked. If the result is an error which states that
the DB is full, the SMTP servers (producers) must be stopped. This is the simple case where the usage
of a resource reaches the upper limit (exceed the upper threshold).

130 Sendmail X, May 4, 2005, 11:44

After several operations have been performed of which some contain additions to DBs, a generic throttle
function can be called which checks whether any of the resource usages exceeds its lower limit in which
case the SMTP servers are throttle accordingly. This needs to be done only if the new resource usage is
sufficiently different from the old value, otherwise it is not worth to notify the producers of a change.

3.4.17.2 Load Control Functionality: Unthrottling

If the system is in an overloaded state, i.e., the producers are throttled or even stopped, then the resource
usage must be checked whenever items are removed from DBs. If the new resource usage is sufficiently
less than the old value, the SMTP servers are informed about that change (unthrottled). Alternatively,
the producers can be unthrottled only after all resource usages are below their lower thresholds.

3.4.17.3 Handling out of Memory

Unfortunately there is no simple, portable way to determine the amount of memory that is used by
a process. Moreover, even though malloc(2) is supposed to return ENOMEM if there is no more space
available, this does not work on all OS because they overallocate memory, i.e., they allocate memory
and detect a memory shortage only if the memory is actually used in which case some OSs even start
killing processes to deal with the problem. This is completely unacceptable for robust programming: why
should a programmer invest so much time in resource control if the OS just “randomly” kills processes?
One way to deal with this might be to use setrlimit(2) to artificially limit the amount of memory that
a process can use, in which case malloc(2) should fail properly with ENOMEM.

If the OS properly returns an appropriate error code if memory allocation fails, then the system can be
throttled as described in 3.4.17.1. However, it is hard to recover from this resource shortage because the
actual usage is unknown. One way to deal with the problem is to reduce the size of the memory caches
if the system runs out of memory. That can be done in two steps:

1. try to remove some items from memory caches which are not really necessary for proper operation,
and which do not require updating persistent caches. For example, entries in the active queue that
have not yet been scheduled and are from deferred queue can be removed without having to update
the deferred queue14.

2. (temporarily) decrease the upper limits for memory caches to reduce the amount of memory that
can be used before throttling sets in.

Now the system can either stay in this state or after a while the limits can be increased again. In the latter
case the resource control mechanisms may trigger again if the system runs out of memory again. It might
be useful to keep track of those resource problems to adapt the resource limits to avoid large variations
and hence repeated operation of the throttling/unthrottling code (i.e., implement some “dampening”
algorithm).

3.4.18 Manual Interaction with QMGR

There are two different requirements about interacting with the queue manager:

1. Getting status information.
14Question: does it require updating EDBC?

Sendmail X, May 4, 2005, 11:44 131

2. Triggering certain actions that are usually done internally based on the configuration, e.g., per-
forming a queue run for a certain recipient.

For both forms of interaction a control socket can be used. However, in some cases it might be useful to
give different access rights to the two interactions: reading status information might be allowed for more
persons than requesting actions.

For interaction with QMGR the same basic communication protocol (RCBs) will be used to simplifiy
(and unify) the implementation. For simplicity it seems to be useful to allow only one control connection
at a time.

3.4.18.1 Getting Status Informations

The QMGR should be able to list almost all of its internal status information when requested. In some
cases it might be useful to ask (and return) only a subset of the data to reduce the amount of data that
is sent.

3.4.18.2 Triggering Actions

Available actions should include:

1. Schedule a recipient (based on its id) for delivery “as soon as possible”.

2. Remove a recipient (based on its id) from the queue (discard).

3. Remove a transaction (based on its id) from the queue (discard).

3.5 SMTP Server Daemon

3.5.1 External Interfaces

The external interface of the SMTP server (also called smtpd in this document) is of course defined by
(E)SMTP as specified in RFC 2821. In addition to that basic protocol, the sendmail X SMTP server
will support: RFC 1123, RFC 1869, RFC 1652, RFC 1870, RFC 1891, RFC 1893, RFC 1894, RFC 1985,
RFC 2034, RFC 2487, RFC 2554, RFC 2852, RFC 2920. See Section 1.1.1 for details about these RFCs.

Todo: verify this list, add CHUNKING, maybe (future extension, check whether design allows for this)
RFC 1845 (SMTP Service Extension for Checkpoint/Restart).

3.5.2 Control Flow

A SMTP session may consist of several SMTP transactions. The SMTP server uses data structures that
closely follow this model, i.e., a session context and a transaction context. A session context contains (a
pointer to) a transaction context, which in turn contains a pointer back to the sessions context. The latter
“inherits” its environment from the former. The session context may be a child of a daemon context that
provides general configuration information. The session context contains for example information about
the sending host (the client) and possibly active security and authentication layers.

132 Sendmail X, May 4, 2005, 11:44

The transaction context contains a sender address (reverse-path buffer in RFC 2821 lingo), a list of
recipient addresses (forward-path buffer in RFC 2821 lingo), and a mail data buffer.

3.5.2.1 Startup

At startup a SMTP server registers with the QMGR. It opens a communication channel to the QMGR
and announces its presence. The initial data includes a least a unique identifier for the SMTP server
which will be used later on during communication. Even though the identification of the communication
channel itself may be used as unique identifier, e.g., a file descriptor inside the QMGR, it is better
to be independent of such implementation detail. The unique identifier is generated by the MCP and
transferred to the SMTP server. It may also act as a “key” for the communication between SMTPS and
QMGR/MCP if the communication channel could be abused by other programs. In that case, the MCP
tells the QMGR about the new SMTPS (including its key).

3.5.2.2 States

It seems appropriate to have two different states: the state of the session and that of the transaction,
instead of combining these into one. Not all of the combinations are possible (if there is no active session,
there can’t be a transaction). Many of the states may have substates with simple (enumerative) or
complex (e.g., STARTTLS information) descriptions, some of them must be combinable (“additive”).
Question: How to describe “additive” states? Simplest way: bit flags, binary or. So: can we put those
into bitfields?

Session states:

1. SMTPS-SESSION-NONE: no session active

2. SMTPS-SESSION-CONNECTING: connection attempt

3. SMTPS-SESSION-CONN-INIT: connection succeeded, 220 greeting given.

4. SMTPS-SESSION-EHLO: EHLO command received; aborts a transaction (RFC 2821, 4.1.4 [Kle01]).
Discard transaction context, new transaction state is SMTPS-TA-NONE.

5. SMTPS-SESSION-HELO: HELO command received; aborts a transaction (RFC 2821, 4.1.4 [Kle01]).
Discard transaction context, new transaction state is SMTPS-TA-NONE.

6. SMTPS-SESSION-AUTH: AUTH command received (can only be given once, is additive).

7. SMTPS-SESSION-STARTTLS: STARTTLS command received (can only be given once, is addi-
tive).

8. SMTPS-SESSION-RSET: RSET command received. Discard transaction context, new transaction
state is SMTPS-TA-NONE. Question: is this a session or a transaction command?

9. SMTPS-SESSION-QUIT: QUIT command received

10. SMTPS-SESSION-NULL: reject almost all commands, i.e., act as “nullserver”.

Transaction states:

1. SMTPS-TA-NONE: no transaction active.

Sendmail X, May 4, 2005, 11:44 133

2. SMTPS-TA-INIT: transaction data initialized.

3. SMTPS-TA-MAIL: MAIL command has been given. New mail transaction starts, create new
transaction context. Check syntax of address and extensions as well as whether the requested
extensions are available and valid.
Multiple MAIL commands are not allowed during a transaction, i.e., MAIL is only valid if state is
SMTPS-TA-INIT.

4. SMTPS-TA-RCPT: RCPT command has been given. Add recipient to transaction context (list of
recipients). Check syntax of address and extensions as well as whether the requested extensions are
available and valid. Also perform anti-spam checks, esp. anti-relay.
RCPT is only valid if state is SMTPS-TA-MAIL or SMTPS-TA-RCPT.

5. SMTPS-TA-DATA: DATA command has been given. Collect data. DATA is only valid if state is
SMTPS-TA-RCPT.

6. SMTPS-TA-DOT: Final dot of DATA section has been given (this is a transient state). Commit
mail content to stable storage or deliver it. Then acknowledge receipt and clear transaction (buffers),
i.e., essentially delete the transaction context in the SMTP server. Next state is SMTPS-TA-NONE
or SMTPS-TA-INIT.

Some of these states require a certain sequence, others don’t. We can either put this directly into the
code (each function checks itself whether its prerequisites are fulfilled etc) or into a central state-table
which describes the valid state changes (and includes appropriate error messages). It seems easier to have
this coded into the functions than having it in the event loop which requires some state transition table,
see libmilter.

VRFY, EXPN, NOOP, and HELP can be issued at (almost) any time and do not modify the transaction
context (no change of buffers).

3.5.2.3 Data Structures

There need to be at least two data structures in the SMTP server; one for a transaction, one for a session.

Additionally, a server context is used in which configuration data is stored. This context holds the data
that is usually stored in global variables. In some cases it might be useful to change the context based on
the configuration, e.g., per daemon options. Hence global variables should be avoided; the data is stored
instead in a context which can be easily passed to subroutines. The session context contains a pointer to
the currently used server context.

Session:

session-id session identifier, maybe obtained from QMGR
connect-info identification of connecting host (IP address, host name, ident)
fd file descriptor/handle for connection
helo-host host name from HELO/EHLO
access times start time, last read, last write
status EHLO/HELO, AUTH, STARTTLS (see above)
features features offered: AUTH, TLS, EXPN, ...
workarounds work around bugs in client
reject-msg message to use for rejections (nullserver)
auth AUTH context
starttls TLS context
transaction pointer to current transaction

134 Sendmail X, May 4, 2005, 11:44

Transaction:

transaction-id transaction identifier, maybe obtained from QMGR
mail address, arguments (decoded?)
rcpt-list addresses, arguments (decoded?)
cdb-id CDB identifier (obtained from cdb?)
cmd-failures number of failures for certain commands
session pointer to session

Question: How much of the transaction do we need to store in the SMTP server? The QMGR holds the
important data for delivery. The SMTP server needs the data to deal with the current session/transaction.

3.5.2.4 Detailled Control Flow

Todo: describe a complete transaction here including the interaction with other components, esp. queue
manager.

Notice: this probably occurs in an event loop. So all functions are scheduled via events (unless noted
otherwise).

As described in Section 3.16.4 the I/O layer will try to present only complete records to the middle
layer. However, this may be intertwined with the event loop because otherwise we have a problem with
non-blocking I/O. For the purpose of this description, we omit this I/O layer part and assume we receive
full records, i.e., for the ESMTP dialogue CRLF terminated lines.

1. The SMTP server waits for incoming connection attempts.

Before accepting any new connection, a session context is created. This allows the server to react
faster (it doesn’t need to create the context on demand), and it is guaranteed that a session context
is actually available. Otherwise the server may have not enough memory to allocate the session
context and hence to start the session.

smtps session new(OUT smtps-session-ctx, OUT status): create a new session context.

2. The SMTP server receives an incoming connection attempt.

smtps session init(IN fd, IN connect-info, INOUT smtps-session-ctx, OUT status): Initialize session
context, including state of session, fill in appropriate data.

The basic information about the client is available via a system call (IP address). The (canonical)
host name can be determined by another system call (gethostbyaddr(), which may be slow due to
DNS lookups). Question: do we want to perform this call in the SMTP server, in the QMGR, or
in the AR? There should be an option to turn off this lookup completely and hence only rely on IP
addresses in checks. This can avoid those (slow) DNS lookups. SMTPS optionally (configurable)
performs an auth (ident) lookup.

smtps session chk(INOUT smtps-session-ctx, OUT status): SMTPS contacts the queue manager
and milters that are registered for this with the available data (IP address, auth result). The queue
manager and active milters decide whether to accept or reject the connection. In the latter case the
status of the server is changed appropriately and most commands are rejected. In the former case
a session id is returned by the queue manager. Further policy decisions can be made, e.g., which
features to offer to the client: allow ETRN, AUTH (different mechanisms?), STARTTLS (different
certs?), EXPN, VRFY, etc, which name to display for the 220 greeting, etc. The QMGR optionally
logs the connection data.

Question: how can we overlap some OS calls, i.e., auth lookup, gethostbyaddr(), etc?

Sendmail X, May 4, 2005, 11:44 135

Output initial greeting (usually 220, may be 554 or even 421). Set timeout. Progress state or
terminate session.

3. Read SMTP command from client. In case of timeout, goto error treatment (abort session). Call
the corresponding SMTP function.

4. If SMTP commands are used that change the status of a session (e.g., STARTTLS, AUTH), those
are executed and their effects are stored in the session context. Those functions are:

smtps starttls(INOUT session-ctx, OUT state)

smtps auth(INOUT session-ctx, OUT state)

5. For each transaction a new envelope is created and the commands are communicated to the queue
manager and the address resolver for validation and information. Other processes (esp. milters)
might be involved too and the commands are either accepted or rejected based on the feedback
from all involved processes.

6. When an e-mail is received (final dot), the queue manager and the SMTP server must either write
the necessary information to stable storage or a delivery agent must take over and deliver the e-mail
immediately. The final dot is only acknowledged after either of these actions completed successfully.

All the following functions check whether their corresponding commands are allowed in the current state as
stored in the session/transaction context. Moreover, they check whether the arguments are syntactically
correct and allowed depending on the features in the session context. The server must check for abuse,
e.g., too many wrong commands, and act accordingly, i.e., slow down or in the worst case closing the
connection. Functions in SMTP server (see Section 3.4.12 for counterparts in the QMGR):

smtps helo(INOUT session-ctx, IN line, OUT state): store host name in session context, clear transaction
context, reply appropriately (default 250).

smtps ehlo(INOUT session-ctx, IN line, OUT state): store host name in session context, clear transaction
context, reply with list of available features.

smtps noop(INOUT session-ctx, IN line, OUT state): reply appropriately (default 250).

smtps rset(INOUT session-ctx, IN line, OUT state): clear transaction context, reply appropriately (de-
fault 250).

smtps vrfy(INOUT session-ctx, IN line, OUT state): maybe try to verify address: ask address resolver.

smtps expn(INOUT session-ctx, IN line, OUT state): maybe try to expand address: ask address resolver.

smtps mail(INOUT session-ctx, IN line, OUT state): start new transaction, set sender address.

smtps rcpt(INOUT session-ctx, IN line, OUT state): add recipient to list.

smtps data(INOUT session-ctx, IN line, OUT state): start data section (get cdb-id now or earlier?).

smtps body(INOUT session-ctx, IN buffer, OUT state): called for each chunk of the body. It’s not clear
yet whether this needs to be line oriented or whether it can receive simply entire body chunks. It may
have to be line oriented for the header while the rest can be just buffers, unless we want to perform
operations on the body in the SMTP server too. This function is responsible for recognizing the final dot
and to act accordingly.

Question: how do we deal with information sent to the QMGR and the responses? Question: how do we
describe this properly without defining the actual implementation, i.e., with leaving ourselves room for
possible (different) implementations?

136 Sendmail X, May 4, 2005, 11:44

Assuming that the SMTP servers communicate with the QMGR, we need some asynchronous interface.
The event loop in the SMTP servers must then also react on data sent back from the QMGR to the
SMTP servers. As described in Section 3.5.2.5, events for the session must be disabled or ignored while
the SMTP server is “waiting” for a response from the QMGR.

If the QMGR is unavailable the session must be aborted (421).

3.5.2.4.1 PIPELINING: Concurrency There is one easy way to deal with PIPELINING in the
SMTP server and one more complicated way. The easy way is to more or less ignore it, i.e., perform the
SMTP dialogue sequentially and let the I/O buffering take care of PIPELINING. This works fine and is
the current approach in sendmail V8. The more complicated way is to actually trying to process several
SMTP commands concurrently. This can be used to “hide” latencies, e.g., if the address resolver or the
anti-spam checks take a lot of time – maybe due to DNS lookups – then performing several of those tasks
concurrently will speed up the overall SMTP dialogue. This requires of course that some of those lookups
can be performed concurrently as it is the case if an asynchronous DNS resolver is used.

3.5.2.4.2 ID Generation Question: who generates the ids (session-id, transaction-id)? The QMGR
could do this because it has the global state and could use a running counter based on which the ids
are generated. This counter would be initialized at startup based on the EDB, which would have the
last used value. However, it might reduce the amount of communication between SMTPS and QMGR if
the former could generate the ids themselves. For example, just asking the QMGR for a new id when a
session is initialized is a problem: which id should a SMTPS use to identify this request? The ids must
be unique for the “life time” of an e-mail, they should be unique for much longer. Using a timestamp
(as sendmail 8.12 does more or less) causes problems if the time is set backwards. Hence we need a
monotonically increasing value. The ids should have a fixed length which makes several things simpler
(even if it is just the output formatting of mailq). Since there can be several SMTPS processes, a single
value in a shared location would require locking (the QMGR could provide this as discussed above), hence
it would be more useful to separate the possible values, e.g., by adding a “SMTPS id” (which shouldn’t
be the pid) to the counter. This SMTPS id can be assigned at startup by the MCP. It seems tempting
to make the transaction id name space disjunct from the session id name space and to provide a simple
relation between those. For example, a session id could be: “S SMTPS-Id counter” and a transaction id
could be: “T SMTPS-Id counter ta-counter”. However, this makes it harder to generate fixed-length ids,
unless we restrict the number of transactions in a session and the number of SMTPS processes. If we
do that, then we must not set those limits to small (maybe 9999 would be ok), which on the other hand
wastes digits for the normal cases (less than 10 for both values). Using 16 bit for the SMTPS id and 64
bit for the counter results in a string of 20 characters if we use base 16 encoding (hex). We could go to
16 (14) characters if we use base 32 (64) encoding. However, if we use base 64 encoding, the resulting id
can’t be used as filename on NT since it doesn’t use case sensitive filenames (Check this).

3.5.2.5 Pipelining

If an SMTP server is implemented as an event-driven state machine, then a small precaution must be
taken for pipelining. After an SMTP command has been read and a thread takes care of processing it,
another SMTP command may be available on the input stream, however, it should not be processed
before the processing of the current command has been finished. This can either be achieved by disabling
the I/O events for that command stream during processing, or the session must be locked and any data
available must be buffered while processing is active. It is not clear yet which of those two approaches
is better; changing the set of I/O events may be an expensive operation; additional buffering of input
data seems to be superfluous since the OS or the I/O layer takes care of that and more buffering will

Sendmail X, May 4, 2005, 11:44 137

complicate the I/O handling (and violates layering). Maybe the loops which checks for I/O events should
check only those sessions which are not active, i.e., which are currently not being processed. However,
then the mechanism that is used to check for I/O events must present that I/O event each time (select()
and poll() do this, how about others?).

3.5.2.6 Anti-Spam Checks

Note: there are different checks all of which are currently called “anti-spam checks”. Basically they can
be divided into two categories:

1. relay checks;

2. other policy checks.

Usually those two are merged together for simplicity. The basic assumption here is that a system which
is allowed to relay does not need to undergo other policy checks, i.e., it is trusted. For each step in an
ESMTP session/transaction, various tests can be applied which may have an immediate or delayed effect.
For example, a client can be rejected at connection time (immediate) or it may be authorized to relay
(delayed until RCPT). In most cases, a test returns a weighted result:

1. REJECT (error): reject command (permanent or temporary error).

2. NEUTRAL (continue): proceed (maybe apply subsequent tests for this command/stage); this is the
default if nothing else is found/returned.

3. OK (accept): accept (skip subsequent tests for this command/stage).

4. RELAY: accept and allow relaying (skip subsequent tests for this command/stage).

Here RELAY is stronger than OK because it grants additional rights. However, it is not clear whether RELAY
should override also tests in other (later) stages or just a possible anti-relay test (which might be done for
RCPT). However, there might be cases where this simple model is not sufficient. Example: B is a backup
server for A, but B does not have a complete list of valid addresses for A. Hence it allows relaying for a
(possible) subset of addresses and temporarily rejects other (unknown) addresses, e.g.,

To:a1@A RELAY
To:a2@A RELAY
To:@A error:451 4.7.1 Try A directly

If session relaying actually overrides all subsequent tests, then this example works as expected, because
hosts which are authorized to relay can send mail to A. However, if an admininstrator wants to maintain
blacklists which are not supposed to be used then relaying tests and other policy tests need to be separate.
An alternative solution would be using the QUICK: modifier (see below about QUICK) to indicate that
also positive results (OK, RELAY) should have an “immediate” effect, i.e., they override later rules. This
seems to be consistent with the way it is used in firewall applications ([pf]).

The order (and effect) of checks must be specifyable by the user; in sm8 this is controlled by the
delay checks feature. This allows only for either the “normal” order (connect, MAIL, RCPT) or the
reverse order (RCPT, MAIL, connect). With the default implementation this means that MAIL and
connect checks are done for each RCPT which can be very inefficient.

138 Sendmail X, May 4, 2005, 11:44

3.5.2.6.1 Combining Anti-Spam Checks The implementation of the anti-spam checks is non-
trivial since multiple tests can be performed and hence the individual return values must be combined
into one. As explained in Section 3.14.1, map lookups return two values: the lookup result and the
RHS if the key was found. For example, for anti-relay checks the interesting results are (written as pair:
(lookup-result, RHS), where RHS is only valid if lookup-result is FOUND):

• (FOUND, RELAY): allow relaying, no further tests required,

• (NOTFOUND, -) and (PERMFAIL, -) are treated as NO-DECISION-YET (or CONTINUE): if
there are more tests: run those, otherwise deny or temporary failure,

• (TEMPFAIL, -): if there are more tests: run those, otherwise temporary failure.

The last case will be carried through unless an allowance is given. This is fairly simple and can be coded
into the binary:

state = NO-DECISION-YET;
while (state != RELAY && more(tests)) {

(r, rhs) = test();
switch (r, rhs) {
case (TEMPFAIL, -): state = r; break
case (FOUND, RELAY): return r;
default: break;

}
}
if (state == NO-DECISION-YET) return REJECT;
else return state;

These anti-relay checks should be done in several phases of the ESMTP dialogue.

1. Session: Is the client authorized to relay? If so, set a flag in the session state. Note: the authorization
can be done based on the client IP address or be the result of some other authentication such as
STARTTLS or AUTH. If the client authentication causes a temporary failure, then this must be
stored in the session state too (see above) to give the correct error message later on (temporary
failure instead of a permanent error).

2. Transaction: Theoretically relaying could also be allowed per MAIL address. This is insecure and
should not be implemented by default, however, an extension module may want to do this.

3. Recipient: If relaying is not allowed per session, then each RCPT must be checked. This can be
extended to allow only certain clients or senders to reach specific recipient addresses, which is not
directly related to anti-relaying however.

To do this, the flow control depicted above is enhanced such that the state is initialized properly by
the state of the surrounding ESMTP phase, i.e., for session it is initialized to NO-DECISION-YET, for
RCPT it is set to the relay-state of the session.

It becomes more complicated for other anti-spam tests. For example: one test may return TEMPFAIL,
another may return OK, a third one REJECT, a fourth one REJECT but with a 4xy error. Question:
how to prioritize? Question: should it be just a fixed algorithm in the binary or something user-definable?
Maybe compare nsswitch.conf(2)([nss]) which provides a “what to do in case of...” decision between
different sources (checks in the anti-spam case)? That is:

Sendmail X, May 4, 2005, 11:44 139

Result Meaning
FOUND Requested database entry was found
NOTFOUND Source responded ”no such entry”
PERMFAIL Source is not responding or corrupted (permanent error)
TEMPFAIL Source is busy, might respond to retries (temporary error)

Action Meaning
CONTINUE Try the next source in the list
RETURN Return now

<entry> ::= <database> ":" [<source> [<criteria>]]*
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "=" <action>
<status> ::= "FOUND" | "NOTFOUND" | "PERMFAIL" | "TEMPFAIL"
<action> ::= "RETURN" | "CONTINUE"
<source> ::= "file" | "DNS" | ...

So we need a state that is carried through and can be modified, and an action (break/return or continue).

<entry> ::= <what> ":" [<test> [<criteria>]]* <return>
<test> ::= some-test-to-perform
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "?" [<assignment>] <action> ";"
<status> ::= "FOUND" | "NOTFOUND" | "PERMFAIL" | "TEMPFAIL"
<action> ::= <return> | "continue"
<return> ::= "RETURN" [<value>]
<assignment> ::= "state" "=" <value> ","
<value> ::= <status> | "status"

Alternatively we can use a marker that says: “use this result” (e.g., pf([pf]): quick); by default the last
result would be used. However, this doesn’t seem to solve the TEMPFAIL problem: the algorithm needs
to remember that there was a TEMPFAIL and return that in certain cases.

Question: can we define an algebra for this? Define the elements and the operations such that a state
and a lookup result can be combined into a new state? Would that make sense at all? Would that be
flexible enough?

3.5.2.6.2 Requirements for Anti-Spam Checks Question: what are the requirements for anti-
spam? Are the features provided by sm8 sufficient? Requirements:

1. override builtin checks.

2. reject connections, sender and recipient address.

3. allow connections or sender address based on recipient, i.e., override rejections. Note: currently this
is a simple all or nothing scheme, i.e., if a recipient address is marked as “spam-friend”, then all
checks are turned off. A more complex configuration would selectively turn on/off checks [Krü98].
This is done by returning a list of identifiers which define the set of checks to enable (or disable).
Using a map for this is an example of “configuration via map” which is not a good idea for anything
more complex than returning a simple (single) value.

140 Sendmail X, May 4, 2005, 11:44

Question: Where do we put the anti-spam checks? Some of them need similar routines as provided by the
address resolver, e.g., for anti-relay we need the recipient address in a canonical form, i.e., which is the
real address to which the mail should be sent? Maybe we need an interface that allows different modes,
i.e., one for verification etc only, one for expansion.

3.5.2.6.3 Current Behavior of Anti-Spam Checks For each stage in the SMTP dialogue there
are builtin checks (which usually can be turned on/off via an option, e.g., accept-unresolvable-domain),
and there are checks against the access map. The order of checks specifies whether a check can override
other (“later”) checks unless special measures are taken (see below). Note: some of the builtin checks are
configured by the user, hence it does not make sense to provide another option to override these because
that can be done by setting the option accordingly, e.g., for connection rate it simply requires increasing
the limit.

• Connect: builtin: rejection based on number of open connections, number of connections within
the last time interval, etc.

user defined: check host name and address against maps (access map, DNS based blacklists).

• EHLO: currently not really supported.

• MAIL:

builtin: syntax checks15.

user defined: check address against maps (access map, DNS based blacklists).

builtin: unresolvable domain, others?

• RCPT:

builtin: syntax checks, local user: does the address exist?

user defined: check address against maps,

builtin (configurable via map): check anti-relay.

• DATA: currently not really supported.

As usual these checks may all be done during the RCPT stage or when they occur during the SMTP
dialogue.

Before the control flow of sm8 is described, the values (data, RHS) of a map lookup need to be explained:

1. REJECT: return permanent error; this is just an abbreviation for ERROR:550 error-text.

2. ERROR:error-code-text return permanent or temporary error. Maybe this should be split in two
values: TEMP and PERM, otherwise it is necessary to inspect the error code.

3. CONTINUE (default): this is the value that is used if nothing is found, it currently is not a valid
RHS. This is basically the same as SKIP; which can be used to exempt a subnet/subdomain if a
net/domain is listed, e.g., reject all of 10.* but 10.1.2.*. CONTINUE indicates that this particular
test did not produce a useable result (a match), but further tests can (should) occur (in contrast
to OK).

4. OK: override other checks for the same stage.
15It might make sense to specify a “strictness” level for the syntax checks.

Sendmail X, May 4, 2005, 11:44 141

5. ACCEPT: override all further checks (maybe QUICK:OK, see below about QUICK), e.g., if a
connection comes from a trusted host, accept the mail even if the sender address would be rejected
due to later checks. This could be used to turn off anti-spam checks based on client address or
maybe even sender address. Note: see the next item how different tags are required for recipient
addresses to override anti-spam checks.

6. RELAY: allow relaying. Note: this is not really a value that is related to the anti-spam checks.
Hence it causes problems, because there must be a way to distinguish between the anti-spam and
the anti-relay entries in the map. This is exemplified by the use of different tags (in sendmail
8) to allow relaying to domains and to exempt domains from anti-spam tests when the feature
delay-checks is activated: for the former the tag To: is used, for the latter its Spam:.

7. DISCARD: discard mail (pretend to accept it but throw it away). Note: for recipients it might be
useful to have to different versions: one to discard just the recipient, another one to discard the
entire transaction.

8. QUARANTINE: quarantine mail, i.e., accept it and keep in mail queue until explicitly released.

Control flow in sm8:

1. without delay-checks:

• connect: client host name, IP address: OK (override other checks for connect), DISCARD
(everything in this session), REJECT, RELAY (not used here, will be checked during RCPT
again).

• MAIL: mail sender address: OK (override other checks for MAIL), DISCARD (transaction),
REJECT (even RELAY if special configuration is enabled).

• RCPT: recipient address: OK (override other checks for RCPT), DISCARD (transaction16),
REJECT, RELAY. If the lookup returns neither REJECT nor RELAY then the usual anti-
relay tests are performed.

2. with delay-checks: all checks are done during RCPT:

• recipient address: OK (disable other checks for RCPT), REJECT, RELAY. If the lookup
returns neither REJECT nor RELAY then the usual anti-relay tests are performed. Note:
disabling all other checks is not done by having the usual lookup (To:recipient@address),
but by a different tag and a default selection; the tag is Spam: and the RHS defines whether
further checks should be performed17. If yes, those checks are done in the order MAIL and
then connect; otherwise the recipient address is accepted.

• mail sender address: OK (override other checks for MAIL, don’t run connect checks), REJECT
(even RELAY if special configuration is enabled).

• client host name, IP address: OK (override other checks for connect), REJECT, RELAY (not
used here, has been checked at the begin of the sequence, i.e., during RCPT).

These two methods could be combined by keeping track of a state. If delay-checks is used, then MAIL and
connect checks are performed for each recipient (unless overridden via an accept return code). Moreover,
either the return codes could be more fine grained, e.g., for connect checks a return value could say: reject
now, don’t bother to do any further checks later on (compare firewall configurations ([pf]): quick). This
can be achieved by either using different tags for the LHS or different tags for the RHS.

16sendmail 8 does not have DISCARD per recipient?
17see item 6 in the list of valid RHS above for an explanation.

142 Sendmail X, May 4, 2005, 11:44

• Different tags for the LHS: the tag ClientAddr: for the LHS would mean that in case of a match
the result is used during connect, while the tag Connect: for the LHS would mean the RHS is
used after a RCPT check. Tagging the LHS requires double the number of lookups however, hence
tagging the RHS would be better, but that only works if there is at most one result. In some
cases two different values are required, e.g., an entire recipient domain might be a spamfriend and
relaying to it might be allowed (see also item 6 above). Hence this must be decided on a case by
case basis.

• Different tags for the RHS: the values for the RHS are listed above. These could be expanded by
an optional QUICK, e.g., QUICK:REJECT, QUICK:ERROR:error.

Question: what would the state look like? Is it possible to define an order on the value of the RHS (in
that case the state would be the “maximum” of the values)?

Note: a simple state might not be good enough, e.g., if MAIL should be rejected only if RCPT matches
an entry in a map, then a state for MAIL does not help. However, such a test would have to be performed
in RCPT itself (and use MAIL too for its check).

Other hooks should be the same as in sendmail 8, i.e., for the various SMTP commands (DATA, ETRN,
VRFY, EXPN) and some checks for TLS or AUTH.

3.5.2.6.4 Note About Delay-Checks sendmail 8 actually delays checks until the recipient stage.
This has the disadvantage that all checks are run for every recipient unless the recipient is a “spam
friend”. However, this also has one advantage: if all recipients for a transaction are “spam friends” then
none of the other checks need to be performed. This can be an advantage if time consuming checks (e.g.,
DNS blacklists) are specified. It would be possible to implement this behavior in sendmail X without
its disadvantage: the tests need only be performed once and the results will be cached just like they are
now. However, this has one disadvantage: the QUICK: modifier does not work if this implementation is
chosen. It might be possibly to make delay-checks an option with more states than on and off, e.g., off,
delay-rejections: perform tests at corresponding SMTP stage but delay possible rejections, delay-checks:
perform tests only at RCPT stage. This might be a future enhancement but it is not worth the effort for
sendmail X.0.

3.5.2.7 Anti-Spam Checks: Functionality

As the experiences with sendmail 8 anti-spam checks have shown, it will be most likely not sufficient
to provide some simple, restricted grammar. Many people want expansions that are only available in
sendmail 8 due to the ruleset rewrite engine (even though that has several problems by itself since it was
intended for address rewriting, not as a general programming language). Question: how can sendmail
X provide a flexible description language for anti-spam checks (and other extensions, e.g., the address
resolver)? Of course the simplest way for the implementors is to let users hack the C source code. If
there is a clean API and a module concept (see also Section 3.17) then this might be not as bad as it
sounds. However, letting user supplied C code interact with the sendmail source code may screw up the
reliability of sendmail. A separation like libmilter is cleaner but slower.

3.5.2.8 Anti-Spam Checks: Functionality for first Release

For the first release (sendmail X.0) some basic anti-spam functionality must be provided that is sufficient
for most cases. For each step SMAR returns up to three values:

Sendmail X, May 4, 2005, 11:44 143

1. the lookup results (SUCCESS (FOUND), NOTFOUND, TEMPFAIL, PERMFAIL). If the result
is TEMPFAIL or PERMFAIL then the system should have a default reply code (which could be
different for each test). For now TEMPFAIL and PERMFAIL are ignored, i.e., the default reply
code is CONTINUE.

2. if the result was SUCCESS, then it returns an SMTP reply code

RELAY 100 Allow relaying
OK 250 Accept command, no further tests in this stage
CONTINUE 300 Run further tests
SSD 421 Service shutting down
TEMP 450 Temporary error
REJECT 550 Permanent error

This code is modified by adding a constant to it if the RHS string contained QUICK18.

Enhancements for later releases may be:

DISCARD 600 Accept mail but discard it
QUARANTINE 700 Quarantine mail

3. if the result was SUCCESS an optional string can be returned which contains the SMTP reply code,
a DSN code, and an error text.

Below is a proposal for the basic anti-spam algorithm. There are a few configuration options for this:
feature delay-checks (same behavior as in sendmail 8, i.e., returning rejections is delayed to the RCPT
stage).

• connect: client host name, IP address:

– RELAY: allow relaying, store this information in the session state; override other checks for
connect, e.g., potential DNS BL lookups.

– QUICK:RELAY: allow relaying, store this information in the session state; override all other
checks.

– OK: override other checks for connect, e.g., potential DNS BL lookups.

– QUICK:OK: override all other checks except for relay tests.

– QUICK:REJECT: reject session.

– REJECT: reject session unless delay-checks is set.

– TEMP: tempfail session unless delay-checks is set.

– CONTINUE: continue with other checks.

Any other result is stored in the session state, i.e., the triple (result, RHS, text).

• MAIL: lookup mail sender address with tag From: (or Mail:?):

– OK: override other checks for MAIL.

– QUICK:REJECT: reject transaction.

– REJECT: reject transaction unless delay-checks is set.

– TEMP: tempfail transaction unless delay-checks is set.

– CONTINUE: continue with other checks.
18It is also possible to use a negative value, but that might cause confusion with sendmail X error values.

144 Sendmail X, May 4, 2005, 11:44

Any other result is stored in the transaction state.

• RCPT: recipient address: first perform lookups with the tag To: (or Rcpt:?):

– RELAY: accept recipient, run other tests if feature delay-checks is turned on.

– QUICK:RELAY: accept recipient, don’t run any other tests, even if feature delay-checks is
turned on.

– OK: override other checks for RCPT.

– QUICK:OK: override other checks except for relay tests.

– REJECT: reject recipient.

– TEMP: tempfail recipient.

– CONTINUE: continue with other checks.

If the lookup returns neither REJECT nor RELAY then the usual anti-relay tests are performed.

Note: SMAR and SMTPS have to interact here properly to avoid too much communication between
them (and hence latency). The problem is that SMTPS may make some local decisions whether to
allow relaying (based on local maps of some kind, e.g., regular expressions) and those checks are
also part of the algorithm outlined above.

3.5.2.9 Anti-Spam Checks: API

The API provides functions for each SMTP command/phase similar to sendmail 8. For maximum flexi-
bility, we specify it as asynchronous API as outlined in Section 3.1.1. In this case, two different function
calls for the same session/transaction can not overlap (theoretically we could do that due to pipelining,
but it probably doesn’t give us anything). Therefore the session context (which may contain (a pointer
to) the transaction context) should be enough to store the state between calls, i.e., it acts as a handle for
the two corresponding functions.

check connect(INOUT session-ctx, IN line, OUT state), check connect status(IN session-ctx, OUT state),

check helo(INOUT session-ctx, IN line, OUT state), check helo status(IN session-ctx, IN line, OUT
state),

check ehlo(INOUT session-ctx, IN line, OUT state), check ehlo status(IN session-ctx, OUT state),

check noop(INOUT session-ctx, IN line, OUT state), check noop status(IN session-ctx, OUT state),

check rset(INOUT session-ctx, IN line, OUT state), check rset status(IN session-ctx, OUT state),

check vrfy(INOUT session-ctx, IN line, OUT state), check vrfy status(IN session-ctx, OUT state),

check expn(INOUT session-ctx, IN line, OUT state), check expn status(IN session-ctx, OUT state),

check mail(INOUT session-ctx, IN line, OUT state), check mail status(IN session-ctx, OUT state),

check rcpt(INOUT session-ctx, IN line, OUT state), check rcpt status(IN session-ctx, OUT state),

check data(INOUT session-ctx, IN line, OUT state), check data status(IN session-ctx, OUT state),

check header(INOUT session-ctx, IN buffer, OUT state), check header status(IN session-ctx, OUT state),
called for each header line?

check body(INOUT session-ctx, IN buffer, OUT state), check body status(IN session-ctx, OUT state),
called for each body chunk?

Sendmail X, May 4, 2005, 11:44 145

It might also be possible to just pass the SMTP command/phase as parameter and hence minimize
the amount of functions. However, then the callee most likely has to dispatch functions appropriately.
sendmail X will most likely only provide functions for connect, mail, and rcpt, hence it might really be
simpler to have just a single function. There must be some mechanism anyway to act upon configuration
data (see Section 3.5.2.7).

ToDo: specify the behavior of SMTPS when function calls fail and the valid return codes and their
effects. This should be consistent with the behavior specified in 3.5.2.7 and 3.5.2.8. See Section 3.5.4 for
an attempt to specify this behavior.

Notice: if the anti-spam functions end up in a different module from the SMTP server, we certainly have
to minimize the amount of data to transfer; it would be bad to transfer the entire session/transaction
context all the time. Crazy idea: have a stub routine that only sends the changed data to the module.
This might be ugly, but could be generalized. However, it would require that the stub routine recognizes
changed data, i.e., it must store the old data and provide a fast method to access and compare it. Then
we need an interface that allows to transfer only changed data, which could be done by using “named”
fields. However, then also the other side needs to store the data and re-assemble it. Moreover, both
caches need to be cleaned up, either explicitly (preferred, but would require extra API calls which may
expose the implementation; at least we would need a call like close or discard) or by expiration (if an
entry is expired too early, i.e., while in use, it would “simply” be added again). The overhead of keeping
track and assemble/re-assemble data might outweigh the advantage of minimized data transfers.

3.5.2.10 Valid Recipient Checks

The SMTP server must offer a way to check for valid (local) users. This is usually done in two steps:

1. Identify local domains, i.e., check the domain part of an address.

2. Check the localpart against a list of valid users/aliases.

These steps could be combined into one, i.e., look up the complete address in one map. However, this
may require many entries if a lot of “virtual” domains are used and valid users are the same in those.
Moreover, a map of valid localparts might be the password file which does not contain domain parts,
hence the check must be done in two steps.

3.5.2.11 Valid Sender Checks

The mail sender address must not just be syntactically valid but also replyable. The simplest way to
determine this is to treat it as a recipient address and ask the address resolver to route (resolve) it.
However, there are a few problems: the address resolver should not perform alias expansion because it
would be a waste of time to check a long list of addresses (recipients). Question: if an address is found
in the alias map, is that a sufficient indication that it is acceptable (i.e., routable)? Answer: most likely
yes, it is at least very unusual to have an address in the alias map which is not valid (routable).

sendmail 8 performs a simple check for the sender address: it tries to determine whether the domain part
of the address is resolvable in DNS. Even though this is a basic check, it is not sufficient as spammers
simply create bogus DNS entries, e.g., pointing to 127.0.0.1. Hence it seems to be useful to perform
an almost full address expansion as described above and then check the IP addresses against a list of
forbidden values which are specified in some map. This approach has also a small problem: if the address
is routed via mailertable then it could be directed to one of those forbidden values. There are two possible
solutions to this problem:

146 Sendmail X, May 4, 2005, 11:44

1. Require an overriding entry for those address in the access map.

2. Do not check entries that have been found in mailertable against forbidden values.

Solution 2 seems to be useful because mailertable entries are most likely made by an administrator with
a clue and hence are implicitly ok. However, implicit operations can cause problems19, hence approach 1
might be better from a design standpoint20, but less user friendly.

3.5.2.12 Map Lookups

Most map lookups for the SMTP servers are implemented by SMAR to avoid blocking calls in the state-
threads application. SMTPS sends minimal information to SMAR, i.e., basically a key, a map to use for
the lookup, and some flags, e.g., lookup the full address, the domain part, the address without details
(“+detail”). SMAR performs the lookup(s) and send back the result(s). The result includes an error
code and the RHS of the map (maybe already rewritten if requested?).

3.5.3 Policy Milter Interface Behavior

The normal operation of a policy milter is fairly easy to implement in SMTPS, it basically acts the same
as querying QMGR or SMAR (access map) whether an SMTP command is allowed. A policy milter has
also access to the mail body, which is not inspected by other modules, however, such functionality can
be added if requested, e.g., some simple regular expression matching on headers and body lines. The
behavior in case of errors can be specified for a milter while it is mostly fixed for the other modules,
i.e., if QMGR fails to respond then the session is terminated (421). In general, a policy milter should be
invoked via the API described in Section 3.5.2.9. However, the API is currently not completely specified,
especially with respect to the behavior of SMTPS when various errors occur and when SMTP error codes
are returned from the API.

For a milter several modes are allowed:

1. ignore any errors.

2. issue temporary errors for every command.

3. terminate the session.

4. sendmail 8 also allows to issue permanent errors for every command. However, it is unclear where
this would be useful.

Based on the first three error modes, the following connection states are possible:

1. no milter configured: !USE-MILTER.

2. milter configured:

(a) connection is established: USE-MILTER.

(b) connection is not established:

i. ignore any errors: ignore milter: !USE-MILTER (same as 1).
19“A bug is a feature that cannot be disabled”.
20The current (2004-04-19) implementation accepts mailertable entries due to the way results are returned.

Sendmail X, May 4, 2005, 11:44 147

ii. issue temporary errors for every command: MILTER-TEMPFAIL.
iii. terminate the session: MILTER-SSD.

Overall this means there are three basically different states:

1. Do not use milter.

2. Use milter.

3. Milter is temporarily unavailable. In this SMTPS should try to reconnect to the milter periodically
(some minimum delay between attempts should be specified as configuration option).

These states should be inherited by each SMTP session such that they can be changed locally. An error in
one session does not necessarily mean that the entire connection is broken. Moreover, reconnect attempts
should only be made for new sessions, making them during a session is not really useful because a milter
usually needs all session related data, e.g., the connection information.

A milter registers with the server in which of the SMTP steps it is interested. Hence in each step the
server checks those flags before it decides whether to send the information to the milter.

An SMTP server should react in basically the same way to results from a milter as it does for results
from other anti-spam checks, e.g., the access map, as specified in 3.5.2.8. However, that specification is
currently not complete because it does ignore lookup errors (see item 1 in Section 3.5.2.8). Section 3.5.4
tries to take errors into account and completely specify the behavior.

3.5.3.1 Interaction between Anti-Spam Checks and Milter

Question: should OK from access map disable policy milter checks (see also Section 2.10.2)? That would
be “confusing” for a milter that wants that data, even though it would match the REJECT behavior
because milter is not invoked in that case. However, this is not really a symmetric situation: REJECT
means that the command is not accepted and hence in almost all cases it does not matter what a milter
would do about it. for OK the milter might want to do something. However, that would be a contradiction
(a misconfiguration), i.e., one part of the configuration explicitly accepts the command another rejects it.
The right return value in this case is CONTINUE instead of OK. In order for the milter to keep track of
the SMTP dialog (and hence the current state) it might be possible to send the information to the milter
including the fact that the command has been accepted and hence cannot be rejected by the milter (“for
your information only”).

Note: the interaction between anti-spam checks and milter is even more complicated if feature delay-
checks is turned on. In sendmail 8 this was a simple hack that only influenced the rulesets (by renaming
the connect and mail check and calling them from the rcpt ruleset). In sendmail X this is solved in a
different way: the checks are run at the appropriate stage in the SMTP dialogue, but the results may
be delayed. Hence a connection might be rejected unless a recipient test overrides it (“spam friend”).
Question: How should this interact with milter tests? Should they just run “normally” as the other tests
and their results are delayed?

3.5.4 More Generic Return and Reply Code Behavior

This section tries to enhance the response model from 3.5.2.8 with the handling of lookup errors. If done
right, it should describe the behavior for the functions specified in Section 3.5.2.9. There are various
ways to deal with errors (as mentioned elsewhere (3.5.3):

148 Sendmail X, May 4, 2005, 11:44

1. ignore any errors (similar to the -o flags for maps in sm8, which causes a lot of problems because
errors are silently ignored which must not be done here).

2. terminate the session (with a temporary error: 421 session/server shutting down).

3. issue temporary errors for every command.

It seems that only the first two modes are really useful: ignore errors or terminate the session on error.
Issuing a temporary error for every command seems like a waste of time and resources; it could only be
useful if the functions can “recover”, i.e., if an error is really temporary and might not occur if the call
is repeated, even without any actions by the caller. For a milter a communication error between SMTP
server and libmilter will usually require a reconnect (and maybe a restart of the milter), hence closing a
SMTP session is the simplest way to deal with the problem.

This can be made more complicated (“fine grained”) by specifying one of these options for each function
(step in the SMTP dialogue) individually instead of globally.

For now we consider only two error modes:

1. ignore errors (EM-IGNORE).

2. terminate the session with a temporary error (EM-SSD).

Here is a simple approach to the problem:

An anti-spam function has a return value (called “lookup result” elsewhere): SUCCESS, NOTFOUND,
TEMPFAIL, PERMFAIL. If the result is TEMPFAIL or PERMFAIL (i.e., an error) then the system
should have a default reply code (which could be different for each test). Question: can the function
itself change those errors into a corresponding reply code? That is, if the return value is an error then
return NOTFOUND if the error mode is EM-IGNORE and SUCCESS plus SSD (see 3.5.2.8) if the error
mode is EM-SSD. This could be done by a generic wrapper, which might even implement different error
modes per state as indicated above.

If this idea is feasible, then the algorithm described in Section 3.5.2.8 can be used without changes. Note:
there is most likely some problem with this approach, but currently I cannot find (remember) it.

3.5.5 Internal Interfaces

The SMTP server is started and controlled by the MCP. Each server communicates with the queue
manager and the address resolver (question: directly?).

3.5.5.1 Throttling

The SMTP servers must be able to reject connections if requested by QMGR to enable load control. This
should be possible in various steps, i.e., by gradually reducing the number of allowed connections. In the
worst case, the SMTP server must reject all incoming connections. This may happen if the system is
overloaded, or simply if there is no free disk space to accept mail.

3.5.5.2 Removal of Entries from CDB

The original design required that the SMTP server removes a content entry from the CDB on request
by the queue manager. This was done to avoid lockings overhead since the SMTP server is the only one

Sendmail X, May 4, 2005, 11:44 149

which has write access to the CDB. However, in the current design the QMGR interacts directly with
CDB (which should be implemented as library) to remove entries from it. This is done for several reasons:

• If there are multiple SMTP server processes (as currently intended) then we may run into locking
issues nevertheless.

• If the items in CDB are independent from each other, then no locking problems occur, because the
QMGR “knows” which entries are used for which purpose, i.e., it can unlink an entry from CDB
after all its references have been removed (because all recipients have been taken care of). Only
if a CDB implementation requires a centralized data structure to keep track of all CDB entries,
then this design decision (removal of entries via QMGR) can cause problems. In that case, a CDB
process might be necessary, or some other way to communicate the update to the right process that
keeps track of the CDB entries.

3.6 Address Resolver

3.6.1 External Interfaces

The address resolver doesn’t have an external interface. However, it can be configured in different ways
for various situations. Todo: and these are?

Question: how to specify address resolving routines? Provide some basic functionality, allow hooks and
replacements? How to describe? There are four different types of addresses: envelope/header combined
with sender/recipient. It must be possible to treat those differently. For example, a pure routing MTA
doesn’t touch header addresses at all.

3.6.2 Valid Recipients

3.6.2.1 Valid Local Recipients

In Section 2.6.6.1 a configuration example was given which is slightly modified here:

local-addresses {
domains = { list of domains };
map { type=hash, name=aliases, flags={rfc2821, local-parts, detail}}
map { type=passwd, name=/etc/passwd, flags={local-parts}}

}

See Section 3.2.3 how the list of valid domains can be specified, and Section 4.3.3 about a possible way
to check whether a domain is in a list.

The current implementation (2004-07-27) uses the following hacks:

1. To specify the list of local domains mailertable entries are used with RHS [127.0.0.2] which
indicates that LMTP over a local socket should be used.

2. To specify valid local users the alias map is used with RHS local:.

150 Sendmail X, May 4, 2005, 11:44

Item 1 could be modified a bit to use a different RHS, e.g., local: or lmtp:, to avoid using an IP address.
The implementation must be modified accordingly (theoretically it might be possible to use a broadcast
address but this is just another hack which may cause problems later). Item 2 should be extended by the
more generic description given above in the configuration example.

Possible flags for map types are:

• rfc2821: map contains RFC 2821 addresses as keys (should this be with or without ¡¿?) For
consistency it would be better to use angle brackets.

• local-parts: map contains the local part of addresses as keys.

• detail: map contains also +detail extensions.

3.6.3 Internal Interfaces

The address resolver must be able to access the usual system routines (esp. DNS) and different map
types (Berkeley DB, NDBM, LDAP, ...). In addition to this, sendmail X.x should contain a generic map
interface. This can either be done using a simple protocol via a socket or shared libraries (modules).

Question: should the address resolver receive a pre-parsed address (internal, tokenized format) or the
string-representation (external format) of the address? This depends on where the address parser is
called. It is non-trivial to pass the internal (tokenized) form via IPC because it is a tree with pointers
in memory. So if we want to use that format, we need to put it into a contiguous memory region with
the appropriate information (we could use pointers starting from the begin of the memory section, but
is the packing/unpacking worth it?). Question: do we want the SMTP server to do some basic address
(syntax) checking? That seems to be ok, but adds code to it. This may also depend on the decision who
will do anti-spam checks, because the address must be parsed before that.

Basic functionality: return DA information for an address.

ar init(IN options, OUT status): Initialize address resolver.

ar da(IN address, IN ar tid, OUT da info, OUT status): start an AR task; optionally get the result
immediately.

ar da get(IN ar tid, OUT da info, OUT status): get results for an AR task.

ar da cancel(IN ar tid, OUT status): cancel an AR task.

Question: do we want to add a handle that is returned from the initialization function and that is passed
to the various AR routines? We may want to have different ARs running, or we want to pass different
options to the routines. If we use a handle, then we need also a terminate function that ends the usage
of that handle.

Note: as explained in Section 3.4.5, the AR is not doing MX lookups. Those are either done in the
QMGR or the DAs.

3.6.3.1 Data Structures

Resolved address format is a tuple consisting of

• DA: delivery agent. Question: can this be a list of delivery agents? If so, the DAs must use the
same arguments, e.g., host to contact etc.

Sendmail X, May 4, 2005, 11:44 151

• host: host to contact; can also be other argument for the selected DA, e.g., path of socket, program
path.

• address: address of recipient in the required form for the DA.

Question: should there be more elements like: localpart, extension, hostpart? It would be nice to make
this flexible (based on DA?).

Notice: the result of an address resolver call can be a list of such tuples. This is more than MX records
can do. By allowing a list of tuples we have maximum flexibility. For example, the address resolver could
return lmtp,host0,user@domain; esmtp,host1:host2,user@domain. Question: what kind of complexity
does this introduce? By allowing different DA the scheduling may become more complicated. Most
MTAs allow at most several hosts, but only one address and DA. This flexibility may have serious impact
on the QMGR, esp. the scheduling algorithms. Before we actually allow this, we have to evaluate the
consequences (and the advantages).

Of course an address can also resolve to multiple addresses (alias expansion).

3.6.3.2 Error Behavior

Handling errors is an especially interesting problem in the address resolver. Even though it looks simple
at first, the problem is complicated by the fact that multiple requests might have to be made. For
example, getting the IP addresses of hosts to contact for an e-mail address involves (in general) MX and
A record lookups, i.e., two phases where the second phase can consist of multiple requests. Handling an
error in the first phase is simple: that error is passed back to the caller. Handling an error in the first
phase is complicated: it depends on the kind of error and for which of the A records an error occurs. The
main idea for the address resolution is to find a host to which the mail can be delivered. According to
the requirements, this is one of the systems that is listed as “best MX host”. Hence if a lookup of any
A record for any of the best MX hosts succeeds it is sufficient to return that result; maybe with a flag
indicated that there might be more data but the lookup for that failed in some way. That is, a partial
result is better than insisting that all lookups return successfully.

3.6.3.3 Caching of Map Lookups

It might be useful to cache results of map lookups in the AR to avoid too many lookups, esp. for maps
where lookups are expensive. This requires that similar to DNS a TTL (Time To Live) is specified to
avoid caching data for too long. A TTL of 0 will disable caching. In general it would be better if the
external maps provide their own caching since then the code in the AR will be simpler. Moreover, if
several modules in sendmail X will use maps, then caching in each of the modules will just replicate data
with the usual problems: more memory in use, possibility of inconsistencies, etc.

Note: this may be a future enhancement that is not part of sendmail X.0.

3.6.3.4 Threading Model

The AR is likely to call functions that may take a long time before they return a result. Those functions
will include network activity or other tasks that have a high latency, e.g., disk I/O: searching for an entry
in a large map. If we actually know all the places that can block, we could employ a similar threading
model as intended for the QMGR, and hence even make the AR a part of the QMGR. However, it is

152 Sendmail X, May 4, 2005, 11:44

unlikely that we are able to determine all possible blocking function calls in advance, especially if third-
party software (or modules) are involved. Hence it is easier for programming to use a threading model
in which the OS helps us to get around the latency, i.e., the OS schedules another thread if the current
one is blocked. This will require more threads than are usually advisable for a high-performance program
(e.g., two times the number of processors), since more threads can be blocked. However, it is probably
still a bad idea to use one thread per task, since that will more or less relate to one thread per connection
which definitely is bad for performance. The event thread library described in Section 3.20.5.1.1 can be
configured to have reasonable number of worker threads and hence should be flexible enough to use for
the implementation of the AR.

If all blocking calls actually are introduced by network activity, then state threads (see Section 3.20.3.1)
would be an efficient way to implement the AR. However, that requires that all libraries which are used
by the AR perform I/O only via the state threads interface which is not achievable because that would
require to recompile many third-party libraries.

3.7 Initial Mail Submission

3.7.1 External Interfaces

The external interface of the mail submission program must be compatible (as much as possible) with
sendmail 8 when used for this purpose. There will be less functionality overall, but the MSP must be
sufficient to submit e-mails.

3.7.2 Internal Interfaces

Todo: to which other program does the MSP speak? See the architecture chapter.

3.8 Mail Delivery Agents

3.8.1 External Interfaces

Mail delivery agents must obey the system conventions about mailboxes. sendmail X.0 will support LDAs
that speak LMTP and run as a daemon or can be started by MCP (on demand) such as procmail [pro].

3.8.2 Configuration

Mail delivery agents have different properties (compare mailer definitions in sendmail 8). These must be
specified such that the QMGR can make proper use of the DA.

These properties are listed below (some of them are configuration options for the MCP, i.e., how to start
DA). Notice: this list is currently almost verbatim taken from the sendmail 8 specification.

• Protocol to use, e.g., SMTP, LMTP, or invoking a program with command line arguments and
feeding entire message to it via stdin (or socket). The latter probably will not be available in
sendmail X.0.

Sendmail X, May 4, 2005, 11:44 153

• Various options for ESMTP: try always, try only if offered, never try it (even if offered).

• STARTTLS, AUTH, etc, capabilities.

• Maximum number of recipients per invocation and per session (if SMTP/LMTP; is there another
protocol that could have multiple transactions per session?).

• The maximum number of message deliveries per session (connection). If a mailer requires a new
invocation for each message, the limit can be simply set to one.

• DSN types (SMTP, “final” delivery).

• Rewriting set(s) for sender and recipient addresses (header/envelope).

• The end-of-line string.

• The maximum message size.

• The maximum line length in the message body.

• The maximum time to wait for the mailer.

• Look up the user part of the address in the alias database. Normally this is only set for local
mailers.

• The user must have a valid account on this machine, i.e., mailbox lookup must succeed. If not, the
mail is bounced.

• Look up ”.forward” for recipient (based on username, user+detail, or even full address).

• Upper case should be preserved in user names or host names. Standards require preservation of case
in the local part of addresses, except for those address for which your system accepts responsibility.

• Disables the loopback check. Normally when sendmail connects to a host via SMTP, it checks to
make sure that this is not accidently the same host name as might happen if sendmail is miscon-
figured or if a long-haul network interface is set in loopback mode.

• Use the hidden dot algorithm.

• Do not look up MX records for hosts contacted via SMTP/LMTP.

• Do not attempt delivery on initial recipient of a message or on queue runs unless the queued message
is explicitly selected during a queue run or an ETRN request.

MCP configuration:

• The pathname of the mailer, special name is used for SMTP; argument vector to pass to the mailer.

• The working directory for the mailer.

• The default user and group id to run as

• The nice(2) increment for the mailer

sendmail 8 options to fix mails by adding headers like Date, Full-Name, From, Message-Id, or Return-
Path will not be in sendmail X(.0) as options for delivery, but should be in the MSA/MSP such that only
valid mails are stored in the system. It’s not the task of an MTA to repair broken mails.

Other sendmail 8 options that probably will not be in sendmail X.0:

154 Sendmail X, May 4, 2005, 11:44

• When an address that resolves to this mailer is verified (SMTP VRFY command), generate 250
responses instead of 252 responses. This will imply that the address is local.

• Escape lines beginning with ”From ” in the message with a ‘>’ sign.

• This mailer wants UUCP-style ”From” lines with the ugly ”remote from host” on the end.

• Do not send null characters to this mailer.

• Do not include angle brackets around route-address syntax addresses. This is useful on mailers
that are going to pass addresses to a shell that might interpret angle brackets as I/O redirection.
However, it does not protect against other shell metacharacters. Therefore, passing addresses to a
shell should not be considered secure.

• Use the route-addr style reverse-path in the SMTP ”MAIL FROM:” command rather than just
the return address; although this is required in RFC 821 section 3.1, many hosts do not process
reverse-paths properly. Reverse-paths are officially discouraged by RFC 1123.

• The mailer wants a -f from flag, but only if this is a network forward operation (i.e., the mailer will
give an error if the executing user does not have special permissions).

• Do not insert a UNIX-style ”From” line on the front of the message.

• Always run as the owner of the recipient mailbox. Normally sendmail runs as the sender for
locally generated mail or as ”daemon” (actually, the user specified in the u option) when delivering
network mail. The normal behavior is required by most local mailers, which will not allow the
envelope sender address to be set unless the mailer is running as daemon.

• If mail is received from a mailer with this flag set, any addresses in the header that do not have
an at sign after being rewritten by ruleset three will have the ”@domain” clause from the sender
envelope address tacked on.

• Force a blank line on the end of a message. This is intended to work around some stupid versions
of /bin/mail that require a blank line, but do not provide it themselves. It would not normally be
used on network mail.

• Strip quote characters off of the address before calling the mailer.

• Do not include comments in addresses. This should only be used if you have to work around a remote
mailer that gets confused by comments. This strips addresses of the form ”Phrase <address>” or
”address (Comment)” down to just ”address”.

• Normally, sendmail sends internally generated email (e.g., error messages) using the null return
address as required by RFC 1123. However, some mailers do not accept a null return address. If
necessary, error messages will be sent as from the MAILER-DAEMON.

• This mailer is expensive to connect to, so try to avoid connecting normally; any necessary connection
will occur during a queue run.

• Apply DialDelay (if set) to this mailer.

More sendmail 8 options that will not be in sendmail X.0:

• 8 bit, 7 bit (maybe later, sendmail X will do only “just send it”)

Sendmail X, May 4, 2005, 11:44 155

3.8.3 Configuring Multiple DAs

See Section 2.8.2 about delivery classed and delivery instances for some basic terminology (which is not yet
fixed and hence not used consistently here). There are several ways multiple delivery agents (instances)
can be specified:

1. Different processes with different features.

2. A single process with subclasses.

3. Different processes with identical features.

Note: proposal 3 is probably required to make efficient use of multi-processor systems, i.e., if a DA is
implemented using statethreads [SGI01] (see also Section 3.20.3.1) then the DA can only make use of
a single processor, moreover, it can block on disk I/O. Additionally, if a DA can only perform a single
delivery per incocation (process), then multiple processes can be used to improve throughput by providing
concurrency.

Proposal 1 is required if the different features are too complicated to implement in a single process.
For example, it does not seem to be useful to implement a DA that speaks SMTP and performs local
delivery as a single process because the latter usually requires changing uids. However, it makes sense
to implement a DA that can speak ESMTP, SMTP, and LMTP in a single process, maybe even using
different ports as well as some other minor differences. Multiple processes are also useful if the DA process
has certain restriction on the number of DA instances (threads) it can provide. For example, one DA
may provide only 10 instances while another one may provide 100. However, such a restriction may also
be achieved by other means, e.g., in the scheduler.

In some cases it might be useful to have a fairly generic DA which can be instantiated by external data,
e.g., via mailertable entries that select a port number. Obviously one instantiation parameter is the
destination IP address (it would not make sense to specify a class for each of them), but which other
parameters should be flexible (specified externally to the configuration itself)? Possible parameters are
for example port number and protocol (ESMTP, SMTP, LMTP). However, this data must be provided
somehow to instantiate the values. Offering too much flexibility here means that these parameters must be
configured elsewhere — outside the main configuration file — which introduces most likely an additional
configuration syntax (e.g., in mailertable: mailer:host:port) which needs to be understood by the user
and parsed by some program, such adding complexity in the configuration and the program. This is
another place where it is necessary to carefully balance consistency (simplicity) and flexibility. In a first
version, a less flexible and more consistent configuration is desired (which also should help to reduce
implementation time).

3.8.3.1 Selecting and Naming Delivery Agents

The previous section showed several proposals how to specify multiple DAs. It is most likely that all of
them will be implemented, because each of them is useful under different circumstances. This causes a
problem: how to select (name) a DA? If multiple processes can implement the same DA behavior, then
they either need the same name or some other way must be found to describe them such that they can
be referenced (selected).

There will be most likely only two ways to select a DA: one default DA (e.g., esmtp) and the rest can be
selected via mailertable.

A DA needs several names:

156 Sendmail X, May 4, 2005, 11:44

1. one by which the MCP can reference it: this is the name of a (delivery agent) section specified in
the configuration; it is (completely?) local to MCP and used mostly for logging purposes. Note:
this refers to a delivery agent instance (see Section 2.8.2, item 2).

2. one by which it can be selected in SMAR (mailertable): delivery class (see Section 2.8.2, item 1)
identifier, e.g., esmtp, lmtp.

3. one by which the scheduler can select it; this is a delivery agent instance (see Section 2.8.2, item 2).

The scheduler receives a delivery class identifier from smar. Based on that it has to find a delivery
agent instance that provides the delivery class. There can be multiple DAs, and hence some selection
algorithm must be implemented; see also below (item 4) about round robin selection etc.

Todo: need some terminology here to properly specify what is meant and unambiguously reference the
various items.

Some random notes that need to be cleaned up:

1. MCP can start multiple processes for one “service”. Problem: how can those processes be distin-
guished?

(a) Pass them some counter as ID? That is not easy, how should it be done? Make the argument
string a format string and use printf() to create the ”real” argument, e.g.,

args = "program -f sm.conf -i %d"
snprintf(realargs, sizeof(realargs), args, id)

Instead of using such a format it might be simpler to just have an option pass id = -i; and
then pass -i id as first argument (just insert it). MCP can give a unique id to each process
that specifies this option.

(b) The process id cannot easily be be used by smtpc itself as unique id because pid is 64bit on
some OS, but the id is only a 32bit value (extending this to 64bit is just not worth the trouble;
the protocol is dealing mostly with 32bit values). Moreover, a pid can be recycled fairly fast,
but this is not desired with the ids used here: a process must cleanly terminate and be removed
from all internal tables, before another process (of the same kind) can register with the same
id.

(c) Alternatively an id could be given by qmgr to smtpc during the initial exchange. How compli-
cated it that? It’s a bit ugly because the id should be used to identify the client (smtpc) during
its communication with the server (qmgr). However, it might be possible to use the pid during
the initial request and then send back an id for subsequent communication. Nevertheless, this
requires some work on both sides (initial id and “real” id).
Note: the SMTPC session/transaction id format expects an 8 bit id only. Possible solution:
qmgr keeps an “internal” id for each smtpc which is used to generate the transaction/session
ids but not anywhere else.

min/max processes: who requests more processes? How do they stop? Idle timeout? Number of
uses? On request?

2. It is also possible to have a DA start several processes of itself. Advantage: it can do the id
generation itself. Disadvantage: this requires additional code to start, stop, and control processes,
which is already available in MCP and should not be duplicated elsewhere. Even if it could be
written in form of a library that can do the basic process control (restarting in case of some errors
but not others, rate limiting, etc) it still requires some control features, e.g., starting processes on
request.

Sendmail X, May 4, 2005, 11:44 157

3. Hierarchy:

(a) multiple process specifications (“service”).

(b) one service with multiple instances (started by MCP).

(c) multiple threads (tasks? thread is used here just as a “thread of execution”, it does not refer
to some implementation, e.g., POSIX or statethreads) in a single process.

orthogonal to this: multiple classes within some level of the hierachy.

4. Define delivery classes (better name? transport?), i.e., their properties: protocol, port, etc, and
then specify delivery agents which implement those mailers. A DA can implement multiple delivery
classes. Other properties of a DA are the number of processes and threads it can provide. If multiple
DAs provide the same delivery classes, then maybe add some scheduling policy (round robin, switch
only to next if one DA is completely busy, etc.).

5. Question: is is necessary or at least useful to combine delivery classes into delivery families (better
word?) such that all delivery classes in a delivery family are implemented by the same delivery
agents? For example, all delivery agents that implement the ESMTP protocol can probably also
provide any variant of it, e.g., different ports. Question: Which structures in QMGR are “per
delivery class” (or per delivery family) instead of per delivery agent? For example, currently ready
queues are per destination IPv4 address, they do not take the delivery class (or agent) into account.
There is already some hack: selecting LMTP as protocol is done by a specific IPv4 address. It
seems this must be generalized.

Compare this with sendmail 8: there are different types of mailers specified by the Path field, e.g.,
those which use TCP/IP for communication with a program (IPC), delivery to files (FILE), and
external programs for which the communication occurs via stdin and stdout. All IPC mailers can
be treated as one delivery family.

6. Question: what is required for sendmail X.0? All delivery agents are currently of the same type,
i.e., they all only implement ESMTP and LMTP. Hence there is currently no need to select a DA
based on delivery classes. Therefore it is not necessary to list delivery classes in a delivery agent
(as described in Section 2.8.1).

3.8.4 Internal Interfaces

Interface between QMGR and DA (see Section 3.4.5.1).

Question: what about outgoing address rewriting, header changes, output milters?

3.8.4.1 Status Information from DA to QMGR

Section 3.9.2.1 specifies the “special” case how the SMTP client returns status information for a delivery
attemtp to the QMGR. That section is SMTP client specific, it must be extended (generalized) for other
DA types. Important is whether the transaction was successful, failed temporarily or permanently, and
whether per-recipient results are available. In case of failures: is this failure “sticky” or can another
delivery attempt (with different sender/recipients) made immediately?

Question: which information does the QMGR really need and what is just informational (for display in
the mail queue)? Compare mci in sendmail 8. The QMGR needs to know whether the error is permanent
or temporary and whether it is “sticky”, i.e., it will influence other connections to that host too. Question:
anything else?

158 Sendmail X, May 4, 2005, 11:44

Note: if a DA cannot access the mail content (CDB) — which must be logged as an error — then the
transaction is considered successful if the error code is ENOENT which may happen if someone removed
the CDB entry. Other access errors are returned to the QMGR.

3.9 SMTP Client

3.9.1 External Interfaces

The external interface of the SMTP client is of course defined by (E)SMTP as specified in RFC 2821.
In addition to that basic protocol, the sendmail X SMTP client implementation will support: RFC 974,
RFC 1123, RFC 2045, RFC 1869, RFC 1652, RFC 1870, RFC 1891, RFC 1893, RFC 1894, RFC 2487,
RFC 2554, RFC 2852, RFC 2920.

Todo: verify this list, add CHUNKING, maybe (future extension) RFC 1845 (SMTP Service Extension
for Checkpoint/Restart).

We have similar choices here for the process model as for the SMTP server. However, we have to figure
out which of those models is the best for the client, it might not be the same as for the server.

3.9.2 Internal Interfaces

The internal interface must be the same as for the other delivery agents, except maybe for minor variations.

3.9.2.1 Status Information from SMTP Client to QMGR

The result from the SMTP client for a delivery attempt can be subdivided into two categories: per session
and per transaction.

For the session the result contains the session-id and a status, which is one of the following:

• connection failed, error code (time out, refused, ...)

• failed after connection (not 220, but 4/5xy greeting)

• failed after HELO/EHLO (SMTP reply)

• does not offer required features (STARTTLS, AUTH, DELIVERBY, ...)

• feature failed (STARTTLS, AUTH, ...)

For a transaction the result contains the transaction-id and a status, where status might be fairly com-
plicated. The transaction may fail at any of the SMTP commands (MAIL, RCPT, DATA, final dot)
because the server returns an SMTP error code, there can be an I/O error, or there can be an internal
DA error.

Keeping track of the delivery status is done per recipient (not per transaction), hence an SMTP client
must return status information that can be applied to each recipient of a transaction. This is done by
returning a transaction status and a (possibly empty) list of individual recipient statuses, i.e., the status
of each recipient which has not been accepted. The transaction status applies to all recipients for which no
individual status is sent. Each recipient status is initialized to an temporary error. Only after the RCPT

Sendmail X, May 4, 2005, 11:44 159

command has been sent to the server and a reply has been received the status is updated accordingly. A
transaction is obviously only successful if the final dot was accepted by the server, in which case OK is
the transaction status to send to QMGR. If a temporary error is received for any of the SMTP commands
MAIL, DATA, final dot, or if there is an I/O error or an internal DA error, then the transaction status is
a temporary error. If a permanent error is received for any of the SMTP commands MAIL, DATA, final
dot, then the transaction status is a permanent error.

3.10 Milter

3.10.1 External Interfaces

The external interface for libmilter is described in the documentation that comes with the sendmail 8
source code distribution.

For the purpose of the first sendmail X release, the functionality will be restricted such that all functions
that modify a mail are disabled; they should return a new error code, ENOIMPL.

The SMTP server needs some configuration support for a milter. For simplicity, there will be only a
single milter. If multiple milters are supposed to be used, then some kind of “multiplexor” must be
implemented on the libmilter side.

3.10.2 Internal Interfaces

The internal interface for milter will not use the sendmail 8 – libmilter protocol. That protocol is not
able to deal with multiple SMTP sessions over a single connection. For the same reason, it is not possible
to use ESMTP as protocol even though that would be a good choice because it is a standard and it
offers extensibility. Using ESMTP requires one file descriptor for each (incoming) ESMTP connection
to be able to distinguish between different ESMTP sessions. This causes problems on some platforms
because stdio is limited to 256 file descriptors. Another restriction is imposed by select(2) which
usually can handle up to 1024 file descriptors. While this restriction be circumvented by using poll(2),
it is obviously better to check only a single file descriptor for activity instead of hundreds or thousands.

For simplicity, the same basic protocol that is used between the SMTP servers and SMAR or QMGR will
be used, which is based on RCB (see Section 3.16.11.1.1). The protocol is internal, and hence described
in the implementation Section 4.9.

3.11 Miscellaneous Programs

3.11.1 Show Mail Queue

A program (mailq) should show the content of the mail queues. Currently there are three mail queues
(2.4.1): incoming mail queue, deferred mail queue, and active queue. It should be possible to show the
content of the first two, those are on persistent storage; the last queue is just a subset of the other two.

Question: how accurate must the output be? To achieve a completely accurate output all write (and
delete) operations must be stopped in principle, i.e., write access to a queue must be locked. There
might be some ways around this, e.g., while the program is reading the queue content and another
thread (process) wants to update it those changes must be communicated to the reader, however, this is

160 Sendmail X, May 4, 2005, 11:44

certainly not worth the programming effort. Locking a queue just to display its content does not seem
to be reasonable: if a queue is large then accessing it could take a considerable amount of time during
which other activities are blocked. In such a situation locking a queue just makes progress even slower,
and hence adds to the problem (e.g., a manager asking an employee every few moments whether some
work is done).

3.11.2 Force Queue Run

It might be useful to ask the queue manager to schedule certain entries for immediate (“as soon as
possible”) delivery. This will also be necessary for the implementation of ETRN.

3.11.3 Mailstats

Some statistics need to be available. At least similar to mailstats in sendmail 8. Maybe the rest is
gathered from the logfile.

3.12 Security Hints

3.12.1 Owners and Permissions

This section describes one possible choice for user and group ids in the sendmail X system and the owners
and permissions of files, directories, sockets etc.

The MCP is started by root. The configuration file can either be owned by root or a trusted user. Most
other sendmail X programs are started by the MCP.

The following notation is used:

• Owner-Program: O-P

• Group-Program: G-P

where P is one of Q: QMGR, S: SMTPS, C: SMTPC (or other DAs).

There are the following files which must be accessed by the various programs:

• CDB: written by SMTPS, read by SMTPC, entries are removed by QMGR.

Hence the directory must be writable by SMTPS and QMGR, accessible by SMTPC. The files must
be writable by SMTPS and readable by SMTPC.

Hence the directory is owned by SMTPS (O-S), has group QMGR (G-Q) and the following permis-
sions 0771 (or 0731):

d rwx rwx --x

The files in the directory are owned by SMTPS (O-S) and have group SMTPC (G-C) with permis-
sions 0640:

rw- r-- ---

Sendmail X, May 4, 2005, 11:44 161

Todo: figure out how this works for non-Unix systems.

• IBDB: written and read by QMGR only.

• DEFEDB: written and read by QMGR only.

Moreover, there is one communication socket each between QMGR and other sendmail X programs,
hence these sockets must be readable/writable by QMGR and that program. Considering that socket
permissions are not sufficient to protect a socket in some OS, the socket must be in a directory with the
proper permissions.

The sockets and directories are owned by QMGR and group-accessible to the corresponding program.
Problem: either QMGR must belong to all those groups (to do a chown(2) to the correct group), or the
directories must exist with the correct permissions and the group id must be inherited from the directory
if a new socket is created in that group. The former can be considered a security problem since it violates
the principle of least privileges. The latter may not work on all OS versions.

3.13 Databases and Caches for Envelopes, Contents, and Con-
nections

This section deals in general with databases and caches as they are used in sendmail X.

General notice: us usual it is important to tune the amount of information stored/maintained such that
the advantages gained from the information (faster access to required data) outweighs the disadvantages
(more storage and effort to properly maintain the data). For example, data should not be replicated
in different places just to allow simpler access. Such replication requires more storage (which in case
of memory is precious) and the overhead for maintaining that data and keeping it consistent can easily
outweigh the advantage of faster access.

3.13.1 DBs with Multiple Access Keys

Section 3.4.4 explains that some DBs need multiple access keys. This can be achieved by having one
primary key and several secondary keys. Question: do we want to allow a varying number of keys, or do
we want to write modules with one, two, three, and four keys? The latter is easier to achieve, but not as
flexible. However, if the full flexibility is not needed (it most likely isn’t), then it might not be worth to
try to specify and implement it.

3.13.2 DBs with Non-unique Access Keys

In some cases an access key (which does not need to be the primary key, see 3.13.1) may not uniquely
specify an element. For example, if a host name is used as key, then there might be multiple entries
with the same key. In that case, we need to provide functions to return either a list of entries or to
walk through the list. The latter is probably more appropriate, since usually the individual entries are
interesting, not the list as a whole. For such “walk through” function we need a context pointer that is
passed to the get-next-entry function to remember the last position.

Note: if non-unique access keys are used, then it might be still better to have a primary key which is
unique. This should simplify some parts of the API and the implementation. For example, to remove
an element from the DB it is required to uniquely identify it (unless the application wants to remove

162 Sendmail X, May 4, 2005, 11:44

any element matching the non-unique key which might be only useful in a few cases). If we don’t have a
unique key, then the application needs to search the correct data first and pass a context to the remove
function which is in turn used as unique identifier (e.g., simply the pointer to the entry, but the structure
should be kept opaque for abstraction).

In some cases the application data itself can provide a list of elements with the same key such that
the access method can simply point to one element (usually the head of the list). It is then up to the
application to access the desired elements. However, it might be useful to provide a generic method for
this, at least in the form of macros to maintain such a list. For example, if the element to which the access
structure points is removed, the (pointer in the) access structure itself must be updated. Such a removal
function should be provided to the application programmer to minimize coding effort (and errors).

3.13.3 Envelope Database Access Methods

First we need to figure out what kind of access methods we need. This applies to the incoming queue,
the active queue, and all other queues. Then we can specify an API that gives us those access methods.
Of course we have to make sure that we do not restrict ourselves if we later come up with another access
method that is useful but can’t be implemented given the current specification. We also have to make sure
that the API can be implemented efficiently. Just because we would like some access methods doesn’t
mean that we should really implement them in case they lead to slow implementations.

Question: do we need a recipient id? This might be necessary if the same recipient is given twice. Even
though we could try to remove duplicates, there might be different arguments for the recipient command.
It might not be useful, but we have to be able to deal with it. Answer: we need a recipient id as key to
access the data in the various EDBs.

There must be some way to search for entries in an EDB according to certain criterias, e.g., recipient
host (delivery agent, destination host), delivery time, in general: scheduling information.

Collection of thoughts (just so they don’t get lost, they need reconsideration and might be thrown away):

• Reverse MX: keep a map for MX to host (which of course obeys TTLs). If an MTA comes up check
the map and access entries in the deferred queue via the destination host.

• IP to MX to host map for IPs which point to multiple MX/host names.

3.13.4 Incoming Envelope Database API

The incoming envelope database (INCEDB) is the place where the queue manager stores its incoming
queue. It is stored in memory (restricted size cache) and backed up on disk. Question: do we need two
APIs or can we get along with one? There are some functions that only apply to the backup, but that
can be taken care of by a unified API. However, this unified API is just a layer on top of two APIs, i.e.,
its implementation will make use of the APIs specific to the RSC and the disk backup. For the queue
manager, the latter two APIs should be invisible. For the implementation, it might be useful to describe
them here.

Question: When do we need access to the backup? Answer:

1. Recovery (after shutdown or crash)

2. If the restricted size cache (RSC) overflows, i.e., some envelopes are only in the backup but not in
the RSC. Question: Shouldn’t we move in that case old entries into the deferred queue instead?

Sendmail X, May 4, 2005, 11:44 163

That might simplify the API for the INCEDB, because then there would be only one time when we
need to read data from it: at system startup. This access method can be slow without interfering
with normal operation.

Decision: Use the disk-backup of the INCEDB purely for desaster recovery. So envelopes stay in the RSC
if they can’t be transferred to the ACTEDB as long as the RSC doesn’t overflow. If it does we use the
deferred EDB or we slow down mail reception.

Question: do we just store the data (addresses) in unchanged form in the INCEDB or do we store them
in internal (expanded) form? In general we want the expanded form, but due to temporary problems
during the RCPT stage external formats may be stored too. In that case the address must be expanded
when read from the INCEDB before it is placed into the active queue. See also Section 3.13.6.

3.13.4.1 Incoming Envelope Database API: RSC

API proposal (this is certainly not finalized):

• iqdb open(IN name, IN mode, IN size, OUT status, OUT iqdb-handle): open an incoming envelope
database.

• iqdb close(IN iqdb-handle, OUT status): close an incoming envelope database.

• iqdb session new(IN iqdb-handle, IN session-info, OUT status, OUT session-id): create a new ses-
sion (client connects succesfully).

• iqdb trans new(IN iqdb-handle, IN sender-env-info, OUT status, OUT trans-id): create a new
envelope (done on MAIL command).

• iqdb rcpt add(IN iqdb-handle, IN trans-id, IN rcpt-env-info, OUT status): add a new recipient
(RCPT command).

• iqdb rcpt rm(IN iqdb-handle, IN trans-id, IN rcpt-id, IN rpct-status, OUT status): remove a re-
cipient (mail has been taken care of). This includes a recipient status, e.g., successfully delivered,
some kind of failure, and hence the recipient ended up in another queue. The caller will take care
of DSN handling or putting the entry into another queue if necessary.

• iqdb trans rm(IN iqdb-handle, IN trans-id, OUT status): remove an envelope from the EDB (after
all recipients have been taken care of). Should this be done implicitly when all recipients have been
removed?

• iqdb commit(IN iqdb-handle, IN trans-id, OUT status): commit envelope information to stable
storage.

• iqdb session rm(IN iqdb-handle, IN session-id, OUT status): remove a session from the EDB.

• iqdb trans discard(IN iqdb-handle, IN trans-id, OUT status): discard envelope (connection has
been aborted somehow: RSET, EHLO, connection error on lower level).

• iqdb session lookup(IN iqdb-handle, IN session-info, OUT status, OUT session-handle):

• iqdb trans lookup(IN iqdb-handle, IN sender-env-info, OUT status, OUT trans-handle):

• iqdb rcpt lookup(IN iqdb-handle, IN rcpt-env-info, OUT status, OUT rcpt-handle):

164 Sendmail X, May 4, 2005, 11:44

• iqdb items cache(IN iqdb-handle, OUT items, OUT status): return the number of items in the
memory cache.

• iqdb readprep(IN iqdb-handle, OUT cursor, OUT status): prepare to read through EDB.

• iqdb getnext(IN cursor, OUT status, OUT record): Get next entry from EDB.

• iqdb readclose(IN iqdb-handle, IN cursor, OUT status): stop reading through EDB.

If the RSC stores data of different types, it must be possible to distinguish between them. This is
necessary for functions that “walk” through the RSC and perform operations on the data or just for
generic functions. A different approach would be to use multiple RSCs each of which stores only data
of a unique kind. However, that wastes memory (internal fragmentation), since it cannot be known in
advance in which relations the data needs to be stored, e.g., there might be only a few sessions with lots
of transactions, or there might be many sessions with one transaction each.

3.13.4.2 Incoming Envelope Database: Misc

The INCEDB stores envelope information only temporarily. The envelopes will usually be moved into
the active queue. A reasonable implementation of the disk backup currently seems to be a logfile. This
file shouldn’t grow endlessly, so it must be rotated from time to time (based on size, time, etc). This is
done by some cleanup task, which should be a low-priority thread. It reads the backup file and extracts
that envelope data that hasn’t been taken care of yet. These entries are consolidated into a new file and
the files read will be removed or marked for reuse. The more often it runs the less memory it may need
because then it doesn’t need to read so many entries (hopefully). Question: should this be made explicit
in the API or should this be a side effect of the commit operation, e.g., if logfile big enough, rotate it? It
seems cleaner to have this done implicitly. But that might be complicated and it might slow down the
QMGR in an unexpected moment. Making the operation explicit exposes the internal implementation
and binds part of the queue manager to one particular implementation. This violates modularity and
layering principles. However, we could get around this by making those functions (rotate disk backup)
empty functions in other implementations. Decision: don’t make the implementation visible at the API
level. It’s just cleaner. It can be some low-priority thread that is triggered by the commit operation.

Question: do we need to store session oriented data, e.g., AUTH and STARTTLS, in the INCEDB?

Question: how do we handle commits? Should that be an asynchronous function? That is, initiate-
commit, and then get a notification later on? The notification might be via an event since the queue
manager is mainly an event-driven program. This might make it simpler to perform synchronous (inter-
active) delivery, i.e., start delivery while the connection from the sender is still open and only confirm
the final dot after delivery succeeded, which allows to not actually commit the content to stable storage.
However, does this really help anything? There has to be a thread that performs the appropriate actions,
so that thread would be busy anyway. However, most of the work is done by a delivery agent, so we don’t
need to block a thread for this. So we need another function: incedb commit done(IN incedb-handle, IN
trans-id, IN commit status, OUT status): trigger notification that envelope has been committed.

Question: should we use asynchronous operations (compare aio)? edb commit(handle, trans-id, max-
time): do this within max-time. edb commit status(handle, trans-id): check the status. How do we want
to handle group-commits? We can’t do commits for each entry by itself (see architecture section), so we
either need to block on commit (threading: the context is blocked and when enough entries are there
for committing or too much time passed, then the commits are actually performed and the contexts are
ready for execution again), or we can use asynchronous operation. However, we don’t want to poll, but
we want to be notified. Does the API depend on the way we implement the queue manager? Since the

Sendmail X, May 4, 2005, 11:44 165

QMGR is the only one with (write) access to the EDB, it seems so. But we need a similar interface for
the CDB (see Section 3.13.7.1). So we should come up with an API that is more or less independent of
the callers processing model. On the other hand, it doesn’t make sense to provide different functions to
achieve the same, if we don’t need it (compare blocking vs. non-blocking I/O). It only makes it harder
for us to implement the API. Todo: figure out whether EDB and CDB can use similar APIs for commits
and how much that depends on the callers processing model (thread per connection, worker threads,
processes).

3.13.4.3 Incoming Envelope Database API: Disk Backup

The disk backup for the INCEDB should have its own API for the usual reasons (abstraction layer). API
proposal (this is not finalized):

• ibdb open(IN name, IN mode, IN size, OUT status, OUT ibdb-handle): open an incoming envelope
database.

• ibdb close(IN ibdb-handle, OUT status): close an incoming envelope database.

• ibdb trans add(IN ibdb-handle, IN sender-env-info, IN trans-id, OUT status): write envelope data.

• ibdb trans rm(IN ibdb-handle, IN trans-id, OUT status): remove an envelope from the EDB (after
all recipients have been taken care of).

• ibdb trans discard(IN ibdb-handle, IN trans-id, OUT status): discard envelope.

• ibdb rcpt add(IN ibdb-handle, IN trans-id, IN rcpt-env-info, OUT status): add a new recipient
(RCPT command).

• ibdb rcpt rm(IN ibdb-handle, IN trans-id, IN rcpt-id, IN rpct-status, OUT status): remove a re-
cipient (mail has been taken care of).

• ibdb commit(IN ibdb-handle, IN trans-id, OUT status): commit envelope information to stable
storage.

• ibdb readprep(IN ibdb-handle, OUT cursor, OUT status): prepare to read through EDB.

• ibdb getnext(IN cursor, OUT status, OUT record): Get next entry from EDB.

• ibdb readclose(IN ibdb-handle, IN cursor, OUT status): stop reading through EDB.

• ibdb rcpt app(IN ibdb-handle, IN trans-id, IN rcpt-env-info, INOUT ibdb-req-list, IN status): ap-
pend a recipient change request.

• ibdb ta app(IN ibdb-handle, IN sender-env-info, IN trans-id, INOUT ibdb-req-list, IN status): ap-
pend a transaction change request.

• ibdb req cancel(IN ibdb-handle, IN ibdb-req-list): cancel all the requests in the list.

• ibdb wr status(IN ibdb-handle, INOUT ibdb-req-list): perform the status updates as specified by
the request list.

The last four functions deal with request lists. These lists contain status updates for transactions or
recipients. Requests lists are used to support transaction based processing: all change requests are
collected in a list and after all of the necessary operations have been performed, the requests are committed

166 Sendmail X, May 4, 2005, 11:44

to disk. This is for example helpful in a loop that updates status information: instead of updating the
status for each element one by one, the changes are collected in a list. If during the processing of the
loop an error occurs which requires that all changes are undone, then the request list can simple be
discarded (ibdb req cancel()). If the loop finished without errors, then the requests are committed to
disk (ibdb wr status()). This also has the advantage of being able to implement group commits, which
may result in better performance.

Question: do we need ibdb trans discard()? If the transaction data is only stored after the final dot,
then we wouldn’t need it. However, that might cause unnecessary delays, and in most cases mails are
transmitted and accepted without rejected after the final dot (or transmission aborts due to timeouts
etc). We could also merge ibdb trans rm() and ibdb trans discard() by adding a status parameter to a
common function, e.g., ibdb trans end().

3.13.5 Active Envelope Database API

The active envelope database (ACTEDB) is the place where the queue manager stores its active queue,
it is implemented as a restricted size cache. The active queue itself is not directly backed up by disk, but
other queues on disk act as (indirect) backup.

Todo: clarify this API.

Routine Arguments Returns
actedb open name, size status, actedb-handle
actedb close actedb-handle status
actedb env add actedb-handle, sender-env-info status
actedb env rm actedb-handle, trans-id status
actedb rcpt add actedb-handle, trans-id, rcpt-env-info status
actedb rcpt status actedb-handle, trans-id, rcpt, d-stat status
actedb rcpt rm actedb-handle, trans-id, rcpt-env-info status
actedb commit actedb-handle, trans-id status
actedb discard actedb-handle, trans-id status

• actedb open(IN name, IN size, OUT status, OUT actedb-handle): open active envelope database,
specify size.

• actedb close(IN actedb-handle, OUT status): close an envelope database.

• actedb env add(IN actedb-handle, IN sender-env-info, OUT status): add a new envelope (sender
information contains also trans-id, maybe make it a separate parameter).

• actedb env rm(IN actedb-handle, IN trans-id, OUT status): remove an envelope from the ACTEDB
(after all recipients have been taken care of).

• actedb rcpt add(IN actedb-handle, IN trans-id, IN int-rcpt, OUT status): add a new recipient.

• actedb rcpt status(IN actedb-handle, IN trans-id, IN rcpt, IN d-stat, OUT status) update recipient
status and remove it from active queue. May also update the appropriate queue, i.e., incoming or
deferred depending on where the entry came from and what the new status is. Another way to deal
with that is to defer the update and perform a “group commit” just like for the incoming queue.

• actedb commit(IN actedb-handle, IN trans-id, OUT status) commit envelope information to sta-
ble storage. Question: Shouldn’t this be done separately for rcpt and mail? That is: act-
edb mail commit(IN actedb-handle, IN trans-id, OUT status) and actedb rcpt commit(IN actedb-
handle, IN trans-id, OUT status). That may make it more complicated to have the data in sync. It

Sendmail X, May 4, 2005, 11:44 167

should really update all necessary data in one step (as much as this is possible, we probably won’t
implement real transaction based commits).

3.13.5.0.1 Delivery Agent DB API We need some support functions for the API specified in
Section 3.4.5.1 to manipulate the Delivery Agent DB whose purpose and content has been explained in
Section 3.4.10.12.

• dadb open(IN da, IN da-descripton, OUT dadb-handle, OUT status)

Open a DA DB.

• dadb close(IN dadb-handle, OUT status)

Close a DA DB.

• dadb sess open(IN dadb-handle, IN session, OUT dadb-entry, OUT status)

Open a session and transaction. session contains the destination host to which to connect. The
created dadb-entry contains newly created session and transaction handles.

• dadb ta open(IN dadb-handle, IN da-session-handle, OUT dadb-entry, OUT status)

Open a transaction. The updated dadb-entry contains a newly created transaction handle.

• dadb ta close(IN da, IN da-trans-handle, OUT trans-status, OUT status)

Close a transaction.

• dadb session close(IN da, IN da-session-handle, OUT status)

Close a session.

3.13.6 Deferred Envelope Database API

The deferred envelope database (DEFEDB) is obviously the place where the queue manager stores the
deferred queue.

Question: do we need session oriented data in the deferred EDB? Answer: shouldn’t be necessary, all
data required for delivery is in the envelopes (sender and recipients and ESMTP extensions). Note: this
assumes that nobody is so wierd and uses session oriented data for routing. There might be people who
want to do that; can those be satisfied by allowing additions to the data similar to “persistent macros”
in sendmail 8?

We need several access methods for the EDB (from the QMGR for scheduling). Question: can we build
indices for access “on-the-fly”, i.e., can we specify a configuration option: ‘use field X as index’ without
having code for each field? Answer: we probably need at least code per data type (int, string, ...).
Question: is this sufficient? How about (DA, host) as index or something similarly complicated?

Todo: clarify this API.

168 Sendmail X, May 4, 2005, 11:44

Routine Arguments Returns
defedb open name, mode status, defedb-handle
defedb mail add defedb-handle, sender-env-info status
defedb env rm defedb-handle, trans-id status
defedb rcpt add defedb-handle, trans-id, rcpt-env-info status
defedb rcpt status defedb-handle, trans-id, rcpt, d-stat status
defedb rcpt rm defedb-handle, trans-id, rcpt-env-info status
defedb commit defedb-handle, trans-id status
defedb readprep defedb-handle status, cursor
defedb getnext cursor status, record
defedb close defedb-handle status

• defedb open(IN name, IN mode, OUT status, OUT defedb-handle): open an envelope database.

• defedb close(IN defedb-handle, OUT status): close an envelope database.

• defedb mail add(IN defedb-handle, IN sender-env-info, OUT status): add an envelope (sender).

• defedb env rm(IN defedb-handle, IN trans-id, OUT status): remove an envelope from the EDB
(after all recipients have been taken care of).

• defedb rcpt add(IN defedb-handle, IN trans-id, IN rcpt-env-info, IN d-stat, OUT status): add a
new recipient (RCPT command), d-stat contains the delivery status.

• defedb rcpt status(IN defedb-handle, IN trans-id, IN rcpt, IN d-stat, OUT status) update the status
of a recipient after a delivery attempt: successful/(temporary) failed delivery.

• defedb rcpt rm(IN defedb-handle, IN trans-id, IN rcpt-env-info, OUT status) remove a recipient
from an envelope (recipient has been taken care of).

• defedb commit(IN defedb-handle, IN trans-id, OUT status) commit envelope information to stable
storage.

• defedb readprep(IN defedb-handle, OUT cursor, OUT status) prepare to read through EDB.

• defedb getnext(IN cursor, OUT status, OUT record) Get next entry from EDB.

• defedb readclose(IN defedb-handle, OUT cursor, OUT status) stop reading through EDB.

• defedb rcpt get(IN defedb-handle, IN rcpt-spec, OUT status, OUT record) Get an entry from the
EDB according to a recipient specification. Theoretically we could do an exhaustive search, but
that would be bad for performance. It might be useful for mailq etc, but then a sequential read
and a filter function should be sufficient.

• defedb rcpt app(IN defedb-handle, IN rcpt-spec, IN rcpt-status, OUT status): Append a recipient
status change request to the internal list.

• defedb ta app(IN defedb-handle, IN sender-env-info, IN d-status, OUT status): Append a transac-
tion status change request to the internal list.

• defedb wr status(IN defedb-handle): Write the internal list of status change requests to disk.

The last three functions deal with status change requests, similar to those for IBDB (see Section 3.13.4.3).

Sendmail X, May 4, 2005, 11:44 169

3.13.6.1 Deferred Envelope Database Implementation

Possible implementations:

1. A standard file-per-envelope implementation.

2. A database like Berkeley DB (BDB).

3. A “cyclical file system” version.

About option 3: The basic idea about a cyclical file system is to create a fixed set of files and reuse them.
In this particular case we need files that represent the times at which queue entries should be tried again
(theoretical maximum: Timeout.queuereturn, practical maximum: max-delay). Subdivide the maximum
time into units, e.g., 1 minute, and use the files for the queue in round robin fashion. Each file represents
the entries that are supposed to be tried at now + n ∗ time unit. So a new entry (which represents a
deferred mail/recipient) is placed into the file which represents its next-retry-time. If an entry is delayed
again, it is appended to the appropriate file. Since the QMGR is supposed to take care of all entries that
are to be tried now, the file will be afterwards “empty”, i.e., no entry in the file is needed anymore.

Possible problems:

1. Since sender address and recipient addresses are treated separately, how do we relate those two? If
we store the recipient addresses in those files, where do we store the sender addresses? Sender and
recipient addresses are linked together via the transaction identifier. Hence we can use that identifier
to access the sender address information for a recipient address, i.e., the transaction identifier is
the key for the access, e.g., in a (very simple) database. However, we still need to design that file
structure.

2. Granularity: 1 hour is too coarse, min-delay might be too small (what if it is 1 second?). Example:
5 days total, min-delay 1 minute: 60 ∗ 24 ∗ 5 = 7200 files which can be easily taken care of by a
two-level hashed directory structure, e.g., first level: hours (5 ∗ 25 = 120), second level: minutes
(60). Going down to 1 second as granularity requires 432000 files and probably a three level hash
structure. Using 5 seconds granulariy requires 86400 files. Neither of these seems impossible to
handle, but it seems to be unlikely to use such a fine granularity. Anything less than 10 seconds
seems (currently) unreasonable, 1 minute seems ok.

3. Overflow: files cannot just denote now + n; what if the system is too busy and the now file cannot
be taken care of within the granularity? Then we could overwrite a file. Hence we need at least
some buffer space, i.e., we “artificially” increase the maximum time to max-delay plus some buffer
space.

4. Variable length data: can those files be managed in the same way as the fixed length data? That
is, can the files be reused after a certain time?

5. Items on hold (quarantined) or otherwise waiting for an event to be released should be treated
differently. They are likely to be accessed by destination site or a match on a quarantine reason.
Those entries could be held in a small set of files that is garbage collected from time to time similar
to the incoming queue backup on disk. The admin may define different timeouts for these entries.

Whenever an entry is added to the deferred queue a reason is specified (d-stat). The entry also
contains scheduling information, see 3.4.10.6. This data can be used by the implementation to treat
the entry accordingly.

170 Sendmail X, May 4, 2005, 11:44

6. There must be a (simple) way to update entries, i.e., the system must keep track of delivery
attempts. When an entry is read from the (current) file and scheduled for delivery (or taken care of
in some other way), then afterwards the new status must be noted somehow. This could be done by
updating the file “in-place”, see section 3.13.11.1. However, that might cause a lot of disk activity,
esp. head movement, which should be avoided. A different approach, which is also consistent with
this implementation, is to keep a logfile of entries that have been taken care of. When all entries in
a file (block?) have been handled (use a bit map, maybe also a counter), the file can be removed
or freed in some way, and therafter the logfile is removed/freed.

Note: Courier-MTA uses something remotely similar: it stores the queue files according to the next retry
time, see courier/doc/queue.html.

The mail queue consists of two directories: LSDIR/msgs and LSDIR/msgq. The control file
is stored in LSDIR/msgs/nnnn/Ciiiii, and the data file is LSDIR/msgs/nnnn/Diiiiii. “iiiiii”
is the inode number of the control file. Since inode numbers are always unique, the inode is a
convenient way to obtain unique identifiers for each message in the mail queue. “nnnn” is the
inode number hashed, the size of the hash is set by the configure script (100 is the default, so
this is usually just the last two digits of the inode number).

One item of information that’s stored in the control is the time of the next scheduled delivery
attempt of this message, expressed as seconds since the epoch. There is also a hard link
to the control file: LSDIR/msgq/xxxx/Ciiiiii.tttttt. “tttttt” is the next scheduled delivery
time of this message. “xxxx” is the time divided by 10,000. 10,000 seconds is approximately
two and a half hours. Each subdirectory is created on demand. Once all delivery attempts,
scheduled for the time range that’s represented by each subdirectory, have been made, the
empty subdirectory is deleted. If a message needs to be re-queued for another delivery attempt,
later, the next scheduled delivery time is written into the control file, and its hard link in
LSDIR/msgq is renamed.

This scheme comes into play when there is a large amount of mail backed up. When reading the
mail queue, Courier doesn’t need to read the contents of any directory that represents a time
interval in the future. Also, Courier does not have to read the contents of all subdirectories
that represent the current and previous time intervals, when it’s falling behind and can’t keep
up with incoming mail. Courier does not cache the entire mail queue in memory. Courier
needs to only cache the contents of the oldest one or two subdirectories, in order to begin
working on the oldest messages in the mail queue.

About option 2: this may be simple because it requires only little implementation effort since the DB
is already available. However, it isn’t clear whether the DB is fast and stable enough. Considering
the problems that other Sendmail projects encounter with Berkeley DB we have to be careful. Those
problems are mainly related to locks help by several processes. In case a problem occurs and a process
that holds a DB lock aborts without releasing the lock, all processes must be stopped and a recovery run
must be started. In sendmail X we do not have multiple processes accessing the same EDB, only the
QMGR has access to those. Hence the problem is minimized, we still need to make sure that in case of
an abort the DB locks are properly released. However, we may even be able to use BDB without using its
locks. If we lock the access to the DB inside the QMGR itself, then we avoid the DB corruption problem.
Using locks inside the QMGR to sequentialize access to an EDB does not seem like a big problem. This
would lead to some coarse-grain locking (obtain a mutex before accessing the DB), but that might be ok.
It might even be possible to use BDB as cyclical filesystem, but that is something we have to investigate.
The cyclical filesystem idea restricts the access methods to the recipient records to a purely sequential
way, other access methods would be fairly expensive (require exhaustive search or at least other indices
that may require many updates).

Sendmail X, May 4, 2005, 11:44 171

BDB provides a fairly easy way to use multiple indices to access the DB: the DB->associate method
can link a secondary index to a primary and there can be multiple secondary indices (see [Sleb]: Berkeley
DB: Secondary indices).

3.13.6.1.1 Deferred Envelope Database: Secondary Indices Instead of keeping secondary in-
dices on disk (and hence increasing disk I/O which usually is a scarce resource), we may want to keep
them in main memory and just restrict their size. Since they are just indices, i.e., they just contain a
pointer (e.g., the main key for the DB), the size of each entry can be fairly small. For example, if the
recipient identifier is used as main key then that’s about 25 bytes (see Section 4.1.1). If then a secondary
index is based on the ‘next time to try’ the overall size of the index is less than 32 bytes by entry (as-
suming a 4 byte time value). Hence even storing 100000 entries will only require about 3 MB of memory
(only data; using an AVL tree will add about 20 bytes per entry on a 32 bit machine, hence resulting in a
total of about 5 MB). If a system really has that many entries in the queue then the size of the secondary
index seems fairly small compared to the amount of data it stores on disk (and the common memory
sizes). Moreover, it should be possible to use restricted size caches for some indices and fill them up based
on scanning the main queue. Coming back to our example of using ‘next time to try’ as secondary index,
the data can be sorted (e.g., using AVL trees) and limiting the number of entries to some configurable
value. Then we can simply remove entries that are too far away (their ‘next time to try’ is too far in the
future for immediate consideration) when the cache is full and new entries must be added.

3.13.6.1.2 Deferred Envelope Database: Misc Note that not each transaction must be com-
mitted to disk immediately. It is not acceptable to lose mail, but it is acceptable (even though highly
undesireable) to have mail delivered multiple times. Hence the information that a message has been ac-
cepted and not yet successfully delivered must always safely be stored on persistent storage. However, the
fact that a mail has been delivered is not of that high importance, i.e., multiple of these informations can
be committed in a group to minimize transaction costs. See also the sendmail 8 option CheckpointInterval
and Section 3.13.11.

Note: transaction ids in old Berkeley DB versions (before 4.0.14 according to [Slea]) are 32 bit integers
(of which only 31 bit are available) and hence may be exhausted rather soon. They are reset by running
recovery, which hence might be necessary to do on a regular basis (at least on high volume systems).

3.13.7 Content Database

The content database stores the mail contents, not just the mail bodies (see 2.17).

Possible implementations:

1. A standard file-per-message implementation.

2. For implementations that expect high turnover of messages, a logfile-based CDB with scavenging
garbage collection.

3. When almost all messages can be delivered or relayed right away, a delayed-commit implementation
can conserve disk bandwidth.

4. Lastly, a content database that’s integrated with a mail hosting message store can increase overall
system throughput by a factor of two or more.

5. Wierd idea: use Berkeley DB as CDB.

172 Sendmail X, May 4, 2005, 11:44

Question: will the CDB be implemented as library or as a process by itself? In the former case there
might be a problem to coordinate access to the CDB. If the CDB is accessed from different processes, then
some form of locking may be required. This should be handled internally by the CDB implementation.

3.13.7.1 Content Database API

We need an API (access abstraction) that allows for different implementations. The abstraction must
be good enough to allow for simple implementations (e.g., one file per mail content) as well as maybe
complicated and certainly fast ones. It must be possible to use just memory storage if delivery modes
allow for this (compare interactive delivery in sendmail 8), and it must be possible to use some remote
storage on a distributed system. The API must neither exclude any imaginable implementation (as long
as it makes some sense), nor must it keep us from doing extremely efficient implementations. It must
accommodate (unexpected) changes in the underlying implementations during the lifetime of sendmail
X.

Question: what exactly do we need here?

First we need to get a handle for a CDB. We may have to create a CDB before that but it seems better
to do this outside the system with other programs, e.g., just like you have to set up queue(s) right
now. It might be more flexible to create CDBs on demand (e.g., new directories to avoid “overflowing”
the ones that exist), however, that doesn’t seem to belong in the SMTP server daemon. If the CDB
implementation needs it, it should do it itself whenever its operation requires it.

Question: what about different file systems for CDB? Maybe the user has a normal disk, a RAID, a
memory file system, etc. So we need also some ideas how to use different file systems, which should be
controllable by the user. Do we really want to make it that complicated? Can we hide this in the API
and use “hints” in the open call? That should be good enough (for now); but it is sufficiently general?

We need to create a storage for the mail content per envelope. We should give it the transaction id and
if existent the SIZE parameter. The library returns an id (content-id) and a status.

• cdb start(IN name, IN mode, IN estimated-size, IN hints, OUT cdb-handle, OUT status): open a
CDB. mode is read only or read/write (usually the latter). hints may contain information about
the intended (estimated) usage, e.g., how many contents may be open at the same time.

• cdb open(IN cdb-handle, IN trans-id, IN content-id, IN mode, IN size, IN hints, OUT status, OUT
content-id): open a content entry. mode: read or write. trans-id: transaction id (can be NULL
for read, then content-id must be supplied), size and hints can be supplied if mode is write.

To make the interface flexible, there are two identifiers: transaction id as created by SMTPS and
stored in the envelope data. If it proves to be useful or necessary, the CDB implementation can
return its own identifier which will be used for further function calls (and will be stored in the
envelope data too). It’s not yet clear which data types to use, currently character strings are fairly
likely. If the CDB doesn’t want/need to generate its own ids, it can simply return the transaction
id. If the CDB is realized as a library, the content-id may be an opaque pointer (or a small integer
like a fd).

• cdb write(IN cdb-handle, IN content-id, IN datap, IN len, OUT status, OUT written)

• cdb read(IN cdb-handle, IN content-id, IN datap, IN len, OUT status, OUT read)

Question: should read/write maintain the data pointer (offset) themselves (hidden behind content-
id) or should this be passed back to the caller? If it is hidden, the calls might be optimized (assuming
there is only one writer/reader at a time, which may not be true if we use interleaved delivery).
The implementation must allow one writer and several readers concurrently.

Sendmail X, May 4, 2005, 11:44 173

• cdb commit(IN cdb-handle, IN content-id, OUT status): make sure content is on persistent storage.

• cdb close(IN cdb-handle, IN content-id, OUT status). Should close implicitly call commit?

• cdb abort(IN cdb-handle, IN content-id, OUT status): obvious meaning.

• cdb unlink(IN cdb-handle, IN content-id, OUT status): content isn’t used anymore.

• cdb stop(IN cdb-handle, OUT status): stop using this CDB.

Question: should all functions have cdb-handle as input? That allows to have multiple CDBs open at a
time. It seems to be useful, because that makes the API more generic. However, the cdb-handle could be
“hidden” in the content-id. For now, keep cdb-handle as parameter. If we don’t use cdb-handle explicitly
all the time, the interface is almost the same as for (file) I/O. Hence the question: do we want to use
the same API? The I/O API call sm io setinfo() can be “abused” to implement calls like cdb commit(),
cdb abort(), and cdb unlink().

3.13.7.2 CDB: Group Commits

We have the same problem here as with the envelope DB: how to perform group commits? However, we
probably can’t use the solution (whatever it may be) from the QMGR in the SMTPS. The mechanism
may depend on the process model of the respective module; it might be different in a program that
uses worker threads from one that uses (preforked) processes or per connection threads. If we use per
connection threads then we can simply use a blocking call: we can’t do anything else (can we?) inbetween,
we have to wait for the commit to give back the 250 (or an error). Moreover, most of the proposals how
to implement the CDB do not even allow for group commits (unless the underlying filesystem provides
this facility somehow). For example, if one file per mail content is used, then it is impossible in FFS to
perform a group commit; each file has to be fsync(2)ed on its own.

3.13.7.3 Logging as CDB Implementation

Proposal 2 (see Section 3.13.7) basically tries to get around the problem of fast writes and group commits
(synchronous meta-data operations). By using a log-structured filesystem (implemented by sendmail X
or maybe just used on some OS that actually provide such a filesystem), writing contents to disk should
be significantly faster (an order of magnitude) than using a conventional filesystem and one file per mail
[SSB+95].

In the following, we take a look at some variations of this topic.

3.13.7.3.1 CDB: Log-Structured Filesystem For some references on log-structured filesystems
and their performance relative to conventional filesystems see [RO92], [SBMS93], and [SSB+95]. Espe-
cially [SSB+95] indicates that proposal 2 (see Section 3.13.7) may not work as good as hoped. The main
reason for this is garbage collection, which can decrease performance by up to 40%, which in turn causes
LFS and FFS to have similar performance.

3.13.7.3.2 CDB: Cyclical Filesystem Question: can we use a cyclical filesystem also for the CDB?
In addition to the problems mentioned in Section 3.13.6.1 for case 3 we also have a different garbage
collection problem. If we store the mail content in files related to their arrival time, and do not reuse
them until the maximum queue time is reached, then we have a huge fragmentation, but we would get

174 Sendmail X, May 4, 2005, 11:44

garbage collection for free since we will simply reuse the storage after the timeout. How much was would
this be? Let’s assume we achieve a throughput of 10MB/s, that’s 36GB/h, which is 864GB/day. Even
though 100GB IDE disks can be bought for $20021, that’s a lot of waste. Moreso due to the number
of disks and hence controllers required. Therefore this proposal seems too wierd, it requires too much
hardware, most of which is barely used. Since most mail is delivered almost immediately, probably more
than 90% of that space would be wasted, i.e., used only once during the reception and (almost immediate)
delivery of a mail.

3.13.7.3.3 CDB: Logfile based Implementation It seems that garbage collections is the main
problem for using log-structured filesystems as CDB for sendmail. However, maybe a property of the
mail queue can help us to alleviate that problem. Garbage collection in conventional log-structured
filesystems must be able to reclaim space in partially used segments (see [SSB+95] for the terminology).
This requires compacting that space, e.g., by retrieving the “live” data and storing it in another segment
and then releasing the old segment. Doing that requires of cause disk access and hence reduces the
available I/O bandwidth. Therefore it should be avoided. Instead of reclaiming partially free segments
only entirely free segments will be reclaimed, which doesn’t require any disk access (except for storing
the information on disk, i.e., the bitmap for free/used segments). This should be feasible without causing
too much fragmentation since the files in the mail queue have a limited lifetime. Hence the general
problem that a filesystem has to deal with doesn’t (fully) apply here. It should be possible to reclaim
most segments after a fairly short time. This approach might be something we can persue in a later
version of sendmail X, for 9.0 it is definitely too much work. Even if we can get access to the source code
of a log-structured filesystem (as offered by Margo Seltzer in [SSB+95], pg. 16), that code is in the kernel
and hence would require a significant effort to rewrite. Moreover, it is not clear how much such a code
would interfere with the (U)VM of the OS.

3.13.7.3.4 CDB: Berkeley DB based Implementation Proposal 5 looks like a strange idea.
However, it may have some merits, i.e., it gives us group commits. If we use the transaction id concate-
nated with a block number as key, then the value would be the corresponding block. Group commits are
possible due to the transaction logging facility of BDB. Whether this will give good performance (esp. for
reading) remains to be seen (tested).

3.13.7.4 CDB: Meta Data Operations

General notice: currently it is claimed that meta-data operations in Unix file systems are slow and this
(together with general I/O limits of hard disks) limits the throughput of an MTA. However, there are
file systems that try to minimize the problem, e.g., softupdate (for *BSD), ext3, ReiserFS (Linux), and
journalling file systems (many Unix versions). We may be able to take advantage of those file system
enhancements to minimize the amount of work we have to do to implement a high performance MTA.
Moreover, in high-performance systems disks with large NVRAM caches will be used, thus making disk
access really fast.

3.13.7.5 CDB: File Reuse

Idea for simple CDB: keep queue files around and reuse them. That should minimize file creation/deletion
overhead. However, does it really minimize meta-data operations? As it is shown in Section 5.2.1.2.1,
some filesystems seem to become actually slower when reusing existing files.

212004: 200GB for $100

Sendmail X, May 4, 2005, 11:44 175

3.13.8 Connection Database (Cache)

The queue manager keeps track of all connections:

1. Outgoing connections that are currently open by the delivery agents.

2. Incoming connections that are currently open by the SMTP servers.

3. Past outgoing connections.

4. Past incoming connections.

The first two should be kept in memory, the last two can be stored on disk.

The open connections must be completely available in memory. The older connections can be limited to
some maximum size, using something like LRU to throw expired connection out of the cache.

The connection caches should contain all information that might be relevant for the queue manager:

• Number of open connections

• Last time of connection

• Performance of connection:

– bandwidth, latency (if easily available)

• Number of connection over some time period, e.g., 1, 2, 4, 8, ... minute(s).

For more details see 3.4.10.8 and 3.4.10.10.

3.13.9 Available Database Implementation

Do we want to look into other databases than Berkeley DB? How about:

• cdb (or better: the free alternatives, e.g., tinydb)? It is supposed to be very fast. However, it is
optimized for reading, it should only seldom be rebuilt.

• DBZ from INN? (it is free, but it has very limited use).

3.13.10 Restricted Size Caches

Some data should be stored in memory but the amount of memory used should be limited. For example,
the connection caches must be limited in size.

An RSC stores only pointers to data. We may need to create a copy of the data for the RSC for each
new entry, in which case a entry create() function should be passed to rsc create().

• rsc create(IN rpool P rpool, IN size t limit IN size t htsize, IN int (*free entry)(void *entry, void
*context), IN void *context, OUT *rsc t rsc, OUT status) create a new RSC with maximum size
limit and a hash table size htsize.

Returns a status and (if successful) a handle (otherwise NULL).

176 Sendmail X, May 4, 2005, 11:44

• rsc lookup(IN rsc t rsc, IN const char *key, IN unsigned keylen, OUT void *ptr, OUT status)
lookup an entry. Returns a status and (if successful) a pointer to the entry (otherwise NULL).

• rsc add(IN rsc t rsc, IN bool delok, IN const char *key, IN unsigned keylen, IN void *elem, OUT
void *ptr, OUT status) add (or update) an entry. Only if delok is set it is ok to delete an old entry
if the RSC is full and a new entry must be added. Returns a status and (if successful) a pointer to
the entry (otherwise NULL).

• rsc rm(IN rsc t rsc, IN const char *key, IN unsigned keylen, OUT status) remove (disable) an entry.

• rsc usage(IN rsc t rsc, OUT number) current usage. Returns how many entries are used. This is
useful to figure out how full a cache (queue) is. This might return the total number of entries or a
percentage (times 100 or scaled similarly).

• rsc free(IN rsc t rsc, OUT status) free (close) a RSC.

Question: how do we implement such caches? If the cache size is small, then we can create a fixed size
array. We can then simply use a linear search for entries. Up to which size is this efficient enough?

If linear search becomes too slow, we need a better organization. We need two access methods: First by
key, second by time. So we need to maintain two lookup structures for the array. The first one for the
key can be a b-tree, the second one for the time can be a linked list or a b-tree.

We can use a ring buffer (fixed size linked list; fixed size array) for the time access. If the list is supposed
to expire purely based on the time when an entry has been entered, then that organization is the simplest
and fastet: when the buffer is full, just remove the tail (which is the oldest entry). If the expiration is
based on LRU then a new entry can be made each time. The old one can be either removed (esp. if it
is linked list), or marked as invalid (free). In the latter case the effective size would shrink which might
not be intended but may be reasonable to get efficient operations.

One possible implementation can be taken from postfix: ctable.

3.13.10.1 Restricted Size Caches With Varying Size

For some structures it might be useful to vary the size of a cache depending on the load. Question: which
ones are these? Is this really necessary? A possible implementation might be to link RSCs together, but
that might be complicated if b-trees are used for lookups. Moreover, shrinking a cache is non-trivial, the
question is whether it’s worth to save some memory versus the computational overhead for shrinking.

3.13.11 Atomic Updates

For some operations atomic update are necessary or at least very useful. Such operations include updates
of the delivery status of an email. In previous sendmail versions, rename(2) is used for atomic changes,
i.e., to write a new qf file a tf fike is written and then rename(tf, qf) is used. BSD FFS provides this
guarantee for rename(const char *from, const char *to):

rename() guarantees that if to already exists, an instance of to will always exist, even if the
system should crash in the middle of the operation.

However, sendmail 8 doesn’t update the delivery status of an envelope all the time by default:

Sendmail X, May 4, 2005, 11:44 177

CheckpointInterval=N : Checkpoints the queue every N (default 10) addresses sent. If your
system crashes during delivery to a large list, this prevents retransmission to any but the last
N recipients.

sendmail X can behave similar, which means that atomic updates are not really necessary. However, it
must made sure that there is no inconsistent information on disk, or that at least sendmail can determine
the correct state out of the stored data.

3.13.11.1 Atomic Disk Writes

Question: are disk writes atomic? As long as they are within a block, are they guaranteed to leave the
file in a consistent state? Can we figure out whether the write is within a block? If it spans multiple
blocks, it may cause problems. Otherwise a write could be used for an atomic update, e.g., a reference
counter or status update, without having to copy a file or create a new entry. If we can do “atomic
one byte/block writes”, we can update the information with an fseek(); write(new status,1). Remark:
qmail-1.03/THOUGHTS [Ber98] contains this paragraph:

Queue reliability demands that single-byte writes be atomic. This is true for a fixed-block
filesystem such as UFS, and for a logging filesystem such as LFS.

3.13.12 Data Structures for Queues on Disk and for Communication

If we store several queue file entries in a single file instead of each entry in an individual file (or some
database), then the following layout instructions should be observed. Note: the same structure will be
used for communication between sendmail X modules, see also Section 1.3.1 about this decision.

It might be useful to implement the queue files using a record structure with fixed length entries. This
allows easy access to individual entries instead of sequentially reading through a file. To deal with
variable length entries, continuation records can be used. Even if we don’t use fixed size records, the
entries should be structured as described below (tagged data including length specification). This allows
for fast scanning and recognition without relying on parsing (looking for an end-of-record marker, e.g.,
CR).

The first record must have a version information and should contain a description of the content. It must
have the length of the records in this file. Possible layout: record length (32 bit), version (32 bit), content
description, maybe similar to a printf format string; see also Section 3.16.11.1.

Each record contains first the total length of the entry (in byte, must be multiple of the record length),
then a type (32 bit), and then one or more subentries. The type should contain a continuation flag to
denote whether this is the first or an continuation record. The last record has a length (less or) equal to
the record length. It also has a termination subentry to recognize that the record is completely written
to disk when it is read. Each of the subentries consists of its length (32 bit, must be multiple of 4
to be aligned), type (32 bit), and content. The length specifies only the length of the data, it doesn’t
include the type (or the length itself). We could save bytes if we do this the other way round: type
first, then optionally length, whereby length can be omitted if the type says its a fixed size entry (32 bit
as default). However, this probably makes en/decoding more complicated and is not worth the effort.
Question: should each subentry be terminated by a zero character? If an entry doesn’t fit into the record,
a continuation record is used and the current record is padded, which is denoted by a special type. The
termination subentry is identified by its type. Additionally, it might be useful to write the entire length
of the record as value to minimize the problem of mistakenly identifying garbage on the disk as valid

178 Sendmail X, May 4, 2005, 11:44

record. We won’t use a checksum because the requires us to actually read through all the data before
we can write it. Notice: variable length data should be aligned on 4 byte boundaries to allow things
like accessing a (byte) buffer as an integer value. On 64bit systems it might be necessary to use 8 byte
alignment.

Some open questions:

• Can we use writev() to write an entire record at once? If we use our strings (see 3.16.7) then we
have the length of each entry, and we can directly compute the entire size (without using strlen()
etc).

• How to break up records? Just fill iovec and check whether the record size is exceeded. If yes pad
it and use the next record. What if an entry is longer than the record length? In that case we need
to split it across records.

• Should numbers be printed in readable format or just as bit-pattern? In the latter case we either
have to use htonX() or at least denote the endianness in the “header”, i.e., the first record.

Note: see also xdr(3).

Note: this might be not needed if we go with Berkeley DB for the envelope DB. However, the “queue”
access type for Berkeley DB works only with fixed sized records, so there may be a use for the following
considerations.

3.13.12.1 Size Estimates

Let’s do some size estimates for INCEDB, i.e., the disk back (see Section 3.13.4.3 and 3.4.10.4). The
smallest size should be 4 bytes (32 bit word); for each entry a description (type) and length field is used
additionally (see above).

entry length (bytes)
transaction-id 20, up to 32 or even 64
start-time 8
cdb-id up to 64
n-rcpts 8
sender-spec up to 256 (RFC 2821) plus ESMTP extensions
size 8
bodytype 4
envid up to 100 (RFC 1891)
ret 4
auth no length restriction? (RFC 2554, refers to 1891)
by 10 for time, 1 (4?) for mode/trace

entry length (bytes)
transaction-id 20, up to 32 or even 64
rcpt-spec up to 256 (RFC 2821) plus ESMTP extensions

maybe a unique id (per session/transaction?)
notify 4
orcpt up to 500 (RFC 1891)

If we use a default size of 512 bytes, then we would get 100 KB/s if the MTA can deal with 1000 msgs/s
(for one recipient per message, if it would be two – which is more than the average – it still would be
only 150 KB/s). This is fairly small and should be easily achievable. Moreover, it doesn’t amount to

Sendmail X, May 4, 2005, 11:44 179

much data, e.g., for one day (without cleanup) it would be 12 GB (for very large traffic, i.e., 86 million
messages).

3.13.13 Misc

Some questions and ideas; this part needs to be cleaned up.

Generic idea (see the appropriate sections earlier on which may have more detailled information): EDB:
maybe use some of those as files (just append) and switch to a new one at regular intervals (time/size
limits). The old one will be cleaned up then: all entries for recipients that have been delivered will be
removed (logged), new file will be created. This has to be flexible to deal with “overflow”, i.e., many of
these files might be used, not a fixed set.

In some cases it might be useful to store domain names in reverse order in a DB (type btree). Then a
prefix based lookup can (sequentially) return all subdomains too. Whether host.domain.tld should be
stored as dlt.niamod.tsoh or tld.domain.host remains to be seen (as well as whether this idea makes
much sense at all).

3.14 Maps

As explained in Section 2.12 maps are used to lookup keys and possibly replace the keys with the matching
RHS. The required functionality exceeds that of default lookups (exact match) which can be provided by
performing multiple lookups in which parts of the key are omitted or replaced by wildcard patterns (see
3.14.2). Accordingly replacement must provide a way to put the parts of a key that have been omitted
or replaced into the RHS; this is explained in Section 3.14.3.

3.14.1 Results of Map Lookups

A map lookup has two results22:

1. the result of the lookup attempt, i.e.,

• FOUND: the key was found in the map,
• NOTFOUND: the key was not found in the map,
• TEMPFAIL: the map lookup failed temporarily, another try later on may succeed (timeout,

resource problem, etc),
• PERMFAIL: the map lookup failed permanently.

2. iff the result is FOUND then a value (RHS, data) is returned.

3.14.2 Lookup Functionality

Section 2.12 explains the problem of checking subdomains (pseudo wildcard matches). The solution
chosen23 is a leading dot to specify “only subdomains” (case 2.12 in Section 2.12).

Below are the cases to consider. Note: in the description of the algorithms some parts are is omitted:
22Question: what is a useful terminology to distinguish those two results?
23At least for now, there might be a configuration option that determines whether a leading dot is required.

180 Sendmail X, May 4, 2005, 11:44

• If a lookup succeeds, stop and return the result.

• A flag indicates whether also just “tag:” should be looked up (to retrieve a default value).

1. IP addresses: Input: tag and IP address (printable format). Algorithm: lookup “tag:IPaddress”,
remove the least significant part of the IP address (i.e., the rightmost number including the dot)
and try again: lookup “tag:IPnet”; repeat until all components are removed.

2. Hostnames/Domains: Input: tag and hostname. Algorithm: lookup “tag:hostname”, if that failed:
remove the first component from hostname and lookup “tag:.rest” (i.e., with leading dot); if there
is something left repeat previous step. Question: should the last lookup be: “tag:.” or “tag:”?

3. E-mail addresses: Input: tag, user, detail, hostname. Algorithm:

(a) Repeat the following lookups for each subdomain of hostname (see case 2: for subdomains a
leading dot is used):

i. “tag:user+detail@hostname” if detail is not NULL
ii. “tag:user++@hostname” if detail is not NULL and not empty,
iii. “tag:user+*@hostname” if detail is not NULL,
iv. “tag:user@hostname”
v. “tag:hostname”

(b) If nothing has been found and hostname isn’t NULL then try localpart only:
i. “tag:user+detail” if detail is not NULL
ii. “tag:user++” if detail is not NULL and not empty,
iii. “tag:user+*” if detail is not NULL,
iv. “tag:user”

Notes:

(a) If a component is NULL it will be omitted (unless the entire lookup depends on it).
(b) A flag decides whether @ is appended to the local part or prepended to the domain part. This

is important for those lookups in which case one part can be NULL, for example, for aliases @
would be prepended to the domain part, while for other lookups it would be appended to the
local part. See also Section 3.14.2.1.

(c) Question: should case 3(a)v be done inside the main loop or should that be done after all the
cases 3(a)i to 3(a)iv have been tried for all subdomains? It might even be tried only after 3b.

3.14.2.1 Placing the ’@’ sign

In sendmail 8 there are various places where (parts of) e-mail addresses are looked up: aliases, vir-
tusertable, access map. Unfortunately, all of these use different patterns which are inconsistent and
hence should be avoided:

• aliases: user, user@host

• virtusertable: user@host, @host

• access map: user@host, user@, host

Question: should this be made consistent? If yes, which format should be chosen? By majority, it would
be: user@host, user, @host. A compromise could be to always use the ’@’ sign to distinguish an e-mail
address (or a part of it) from a hostname or something else: user@host, user@, @host.

Sendmail X, May 4, 2005, 11:44 181

3.14.3 Replacing Patterns in RHS

The RHS of a map entry can contain references to parts of the LHS which have been omitted or replaced
into the RHS. In sm8 this is done via %digit where the arguments corresponding to the digits are
provided in the map call in a rule. Since sendmail X does not provide rulesets, a fixed assignment must
be provided. A possible assignment for case 3 (see previous section) is:

digit refers to
0 entire LHS
1 user name
2 detail
3 +detail
4 omitted subdomain?

3.15 Error Handling

3.15.1 Returning Errors

Functions can return errors in different way:

• the return value is “invalid”, i.e., not in the domain of valid results, e.g., NULL for functions that
return a pointer, or less than zero for functions that return only positive integers as valid results. In
that case an additional, detailed error code must be returned. Using a global variable (like errno)
is unacceptable.

• all function results can be valid, hence the error code is given as a result parameter and must be
explicitly checked.

• the return value is the error code, other results are output parameters (if necessary). This is used
by the Pthreads API.

We will not use one general error return mechanism just for sake of uniformity. It is better to write
functions in a “natural” way and then choose the appropriate error return method.

Question: is timeout an error? Usually yes, so maybe it should be coded as one.

Question: Do we want to use an error stack like OpenSSL does? This would allow us to give more
information about problems. For example, take a look at safefile(): it only tells us that there is
a problem and what kind of problem, but it doesn’t exactly say where. That is: Group writable
directory can refer to any directory in a path. It would be nice to know which directory causes the
problem.

OpenSSL uses a fixed size (ring) buffer to store errors (see openssl/include/err.h), which is thread
specific.

3.15.2 Error Classification

A detailed error status consists of several fields (the status, i.e., all of its fields, must be zero if no error
occurred):

182 Sendmail X, May 4, 2005, 11:44

1. error type: temporary, permanent, and internal; the latter is a programming error, e.g., an interface
violation. Warnings can be treated as a special form of errors too. If a resource limit is exceeded,
it might be useful to include whether the problem is due to a soft or hard limit (setrlimit(2)), a
compile or run time limit, or an OS limit. This can probably be encoded in 4 to 8 bits.

2. error code: a value similar to errno that exactly gives the error. This can probably be encoded in
16 bits.

3. subsystem: which part of the program (libraries, module) generated this error? This should be
encoded in the remaining 8 to 12 bits to give a 32 bit error status.

As explained in 3.15.1 some functions return positive integers as valid results, hence negative values can
be used to indicate errors. To facilitate this, the error codes will always be negative, i.e., the topmost bit
is set.

So overall the error status is encoded in a signed 32 bit integer (of course typedef will be used to hide
this implementation detail). Macros will be used to hide the partitioning of the fields to allow for changes
if necessary.

In some cases a numeric error status is not sufficient, an additional description (string) is required or at
least useful. This can be made available as a result parameter, however, see also the next section how
errors can be returned.

3.15.3 Converting Error Codes into Textual Descriptions

If modules are used, it is hard to have a single function that converts an error code into a textual
description like strerror(3) does as Section 3.17 explains. The subsystem field in the error value can
be used to call the appropriate conversion function.

If we want to be extremely flexible, then a module can register itself with a global error handler. It submits
its own error conversion function and it receives a subsystem code. This would make the subsystem code
allocation dynamic and will avoid conflicts that otherwise may arise. Question: is this too complex?

3.15.4 Misc

Minor nit about tags in structures for assertion that the submitted data is of the right type. 8.12 uses
strings, a nice integer value is sufficient, e.g., 0xdeadbeef, 0xbc2001. Then the check is just an integer
comparison instead of a strcmp(). Currently it’s just a pointer comparison, so it’s probably not much
difference. Question: is this guaranteed to work? Someone reported problems on AIX 4.3, it crashes in
the assertion module. The reason for that is a bug in some AIX C compiler that does not guarantee the
uniqueness of a C const char pointer. Bind 9 uses a nice trick defining a magic value as the “concatenation”
of four characters (in a 32 bit word). Even though this restricts the range of magic values, at least it
helps debugging since it could be displayed as string.

3.16 Libraries

sendmail X should make use of many libraries such that the source code of the main programs is only
relatively small and easy to follow. Most complexity should be hidden in libraries, such as different
I/O handling with timeouts and for different OS as well as different actual lower layers (e.g., IPv4 vs

Sendmail X, May 4, 2005, 11:44 183

IPv6). The more modules are implemented via libraries, the easier it should be to change the underlying
implementations to accomodate different requirements and to actually reuse the code in other parts of
sendmail X as well as other projects.

3.16.1 Naming Conventions

3.16.1.1 Naming Conventions for Types

T type
E enum
F function
P pointer
S structure
U union

T is default, the other should be only used if necessary.

3.16.1.2 Naming Conventions for Functions

new() create a new object
or create()
destroy() destroy object (other name?)
open() open an object for use, this may perform an implicit new()
close() close an object, can’t be used unless reopened, this does not destroy the object
add() add an entry to an object
rm() remove an entry from an object
alloc() allocate an entry and add it to an object
free() free an entry and remove it from an object
lookup() lookup an entry, return the data value
locate() lookup an entry, return the entry

There are many alternative names used for lookup: search, find, and get. The latter is used by BBD
and even though it implies that a value is returned, it is a bit overloaded by the I/O function with that
name, which return the next element, without implying that a specific entry is requested.

3.16.1.3 Naming Conventions for Variables

X ctx context for object X
X next pointer to next element for X
X nxt pointer to next element for X (if X is a long name)
state state (if the object goes through various states/stages)
status status: what happened to the object, e.g., SMTP reply code
flags (bit mask of) flags that can be set/cleared/checked

more or less independent of each other

The distinction between state and status is not easy. Here’s an example: A SMTP server transaction
goes through various stages (states): none, got SMTP MAIL/RCPT/DATA command, got final dot. The
status should be whether some command was accepted, so in this case the two are strongly interrelated.
It probably depends on the object whether the distinction can be made at all and whether it’s useful.

184 Sendmail X, May 4, 2005, 11:44

For example, the status might be stored in the substructures, e.g., the mail-structure has the response
to the SMTP MAIL command.

3.16.1.4 Naming Conventions for Structures

As shown in Section 3.16.1.1 a structure definition in general looks like this:

typedef struct abc_S abc_T, *abc_P;
struct abc_S
{
type1 abc_ctx;
type2 abc_status;
type3 abc_link;

};

X link link for list X
X lnk link for list XYZ (if X is a long name)
X l link for list XYZ (if X is a really long name)

Note: link is used for structure elements instead of next which is used for variables. This makes it easier
to distinguish variables and structure elements.

3.16.1.5 Naming Conventions for Macros

The name of macros should indicate whether they can cause any side effects, i.e., whether they use their
arguments more than once and whether they can change the control flow. For the former, the macro
should be written in all upper case. For the latter, the macro should indicate how it may change the
control flow as depicted in the next table.

B break
C continue
G goto
E jump to an error label
R return
T terminate (exit)
X some of the above

Macros that include assert statements don’t need to be of any special form, even though A could be
used; however, many functions use assert/require too without indication of doing that in their name.

3.16.2 Include Files

All include files in sendmail program code will refer to sendmail X specific include files. Those sendmail
X specific files in turn will refer to the correct, OS dependent include files. This way the main program
modules are not cluttered with preprocessor conditionals, e.g., #if, #ifdef.

Sendmail X, May 4, 2005, 11:44 185

3.16.3 I/O

sendmail X will use its own I/O layer, which might be based on the libsm I/O of sendmail 8.12. However,
it must be enhanced to provide an OS independent layer such that sendmail X doesn’t have to distinguish
in the main code between those OSs. Moreover, it should be a stripped-down version containing only
functions that are really needed. For example, it should have record oriented I/O functions (record for
SMTP: a line ending in CRLF), and functions that can deal with continuations lines (for headers).

3.16.3.1 Required I/O Functionality

How should the I/O layer work?

It should buffer reads and writes in the following manner:

• read only: read full buffer, satisfy requests from there.

• write only: put strings into buffer, write buffer if full.

• read/write: two cases:

– single buffered, e.g., a file. The problem here are “direction” changes, i.e., from reading to
writing and vice versa.

∗ reading to writing: discard read buffer.
∗ writing to reading: flush the buffer.

These cases become complicated in stdio since they have to deal with ungetc-buffers. If we
restrict ungetc to push at most one character back and to do this only if previously a character
has been read, then we can simplify this code significantly.

– double buffered, e.g., a network connection. Reads and writes are independent (two buffers
required).

stdio is also fairly complicated since it provides different buffering modes.

Requirements of SMTPS for data:

How to read the data with the least effort? We cannot just read a buffer and write it entirely to disk
(give it to the CDB) because we need to recognized the trailing dot. The smtpsdata() routine should
have access to the underlying I/O buffer. We could either be ugly and access the buffer directly (which
violates basic software design principly, e.g., abstraction), or we can provide a function to do that. In
principle, sm getc() is that function, but it can trigger a read, which we don’t want. If the buffer is
empty, we want to know it, write the entire buffer somewhere, and then trigger a read. We could add a
new macro: sm getb() that returns SM EOB if the buffer is empty. Note: to do this properly (accessing
the buffer almost directly) we should provide some form of locking. Currently it’s up to the application
to ”ensure” that the buffer isn’t modified, i.e., the file must not be accessed in any other way inbetween.

3.16.3.2 I/O Buffer

The I/O buffer currently consists of the following elements:

186 Sendmail X, May 4, 2005, 11:44

int size total size
int r left to read
int w left to write
int fd fileno, if Unix fd, else -1
sm f flags T flags flags, see below
uchar *base start of buffer
uchar *p pointer into buffer

This implements a simple buffer. The buffer begins at base and its size is size. The current usage of the
buffer is encoded in flags. The interesting flags for the use as buffer are:

RD currently reading
WR currently writing

RD and WR are never simultaneously asserted. RW open for reading and writing, i.e., we can switch
from one mode to the other.

The following always hold:

flags&RD ⇒ w = 0

flags&WR ⇒ r = 0

This ensures that the getc and putc macros (or inline functions) never try to write or read from a file
that is in ‘read’ or ‘write’ mode. (Moreover, they can, and do, automatically switch from read mode to
write mode, and back, on ”r+” and ”w+” files.)

r/w denote the number of bytes left to read/write. p is the read/write pointer into the buffer, i.e., it
points to the location in the buffer where to read/write the next byte.

|<- size ->|
|----------------|--------|
^ ^ ^
base p base + size

RD ⇒ p + r ≤ base + size

WR ⇒ p + w ≤ base + size

The buffer acts as very simple queue between the producer and the consumer. “Simple” means:

• RD: the buffer is always completely read and then filled from the base (but maybe not completely
filled since there might not be enough data).

• WR: the buffer is written and then completely flushed such that is empty again.

“Real” queues would have different pointers to write/read for the producer and consumer such that the
queue is entirely utilized. However, that causes problems at “wrap-around”, esp. if more than just one
item (byte) should be read/written: it must be done piecewise (or at least special care must be taken for
the wrap-around cases). We can do something like that because p + r is our pointer to write more data
into the buffer.

3.16.4 Event Driven Loop

The main part of most sendmail X programs is an event driven loop.

Sendmail X, May 4, 2005, 11:44 187

For example, the SMTP server reads data from the network and performs appropriate actions. The
context for each server thread contains a function that is called whenever an I/O event occurs. However,
if we use non-blocking I/O (which we certainly do), we shouldn’t call a SMTP server function (e.g.,
smtps mail from) on each I/O event for that thread, but only if complete input data for that middle-level
function is available. As stated before (see 3.16.3) the I/O layer should be able to assemble the input
data first. So the thread has an appropriate I/O state which is used by the I/O layer to use the right
function to get the input data. During the SMTP dialogue this would be an CRLF terminated line, if
CHUNKING is active it would be an entire chunk.

Event driven programming can be fairly complicated, esp. if events can occure somewhere “deep down”
in a function call sequence. We have to check which programs are easy to write in an event based model,
and how we can deal with others (appropriate structuring or using a different model, e.g., threads per
connection/task).

If a blocking call has to be made inside a function, it seems that the function must be split into two parts
such that the blocking call is the divider, i.e., the function ends with a call that initiates the blocking
function. The blocking function must be wrapped into an asynchronous call, i.e., an “initiate” call and a
“get result” call. The function must trigger an event that is checked by the main loop. Such a wrapper
can be implemented by having (thread-per-functionality) queue(s) into which the initiate calls are queued.
A certain number of threads a devoted to such queue(s) and take care of the work items. When they
are done they trigger an (I/O?) event and the main event loop can start the function that receives that
result and continues processing. This kind of programming can be become ugly (see above).

3.16.5 Resource Pools

sendmail X will reuse the rpool abstraction available in libsm (with the exception of not using exceptions).
Moreover, there should be an rpool free block() function even though it may actually do nothing. An
additional enhancement might be the specification of an upper limit for the amount of memory to use.

3.16.6 Memory Handling

In addition to resource pools (which are only completely freed when a task is done), it might be useful
to have memory (de)allocation routines that work in an area that is passed as parameter. This way we
can restrict memory usage for a given functionality.

A debugging version of malloc/free can be taken from libsm. It might be useful to provide a version that
can do some statistics, see malloc(9) on OpenBSD.

In case of memory allocation problems, i.e., if the system runs out of memory, the usage has to be
reduced by slowing down the system or even aborting some actions (connections). The system should
pre-allocate some amount of memory at startup which it can use in case of such an emergency to allow
basic operation. The pre-allocated memory can either be explicitly used by specifying it as parameter
for memory handling routines, or it can be simply free()d such that system operation can continue. It’s
not yet clear which of those both approaches is better.

3.16.7 String Abstraction

sendmail X should have a string abstraction that is better than the way C treats “strings” (’\0’ terminated
sequences of characters). They may be modelled after postfix’s VSTRING abstraction or libsmi, the latter
seems a good start. They should make use of rpools to simplify memory management. We have to analyze

188 Sendmail X, May 4, 2005, 11:44

which operations are most needed and optimize the string abstraction for those without precluding other
(efficient) usages. Some stuff:

• Append characters to the end of a string: that’s ugly right now (the application itself has to keep
track of the current length and the allowed length, or it has to use an inefficient strlcat() which
looks for the string end each time).

• snprintf(): should be ok, nothing special here? That’s dependent on whether we allow low-level
operation via direct (array) access, which we probably should not do since it violates the abstraction
layer. Then it comes down to the first item.

• Replace characters (or substrings) within a string: that’s ugly. It should be checked whether we
really need this and how it can be replaced by some library function(ality). Write at arbitrary
position in string usage of string+offset as a string, e.g., s=buf+1, use s, then maybe *–s=’<’.
check usage: what kind of operations do we need, how often are those done, which should be
efficient (and secure!)?

Note: it might be useful to have a mode for snprintf() that denotes appending to a string instead of
writing from the beginning. Should this be a new function or an additional parameter? The former seems
the best at the user level, internally it will be some flag.

Even though strings should dynamically grow, there also need to be a way to specify an upper bound.
For example, we don’t want to read in a line and run out of memory while doing so because some attacker
feeds an “endless” line into the program.

The string structure could look like this:

struct sm_str_S
{

size_t sm_str_len; /* current length */
size_t sm_str_size; /* allocated length */
size_t sm_str_maxsz; /* maximum length, 0: unrestricted? */
uchar *sm_str_base; /* pointer to byte sequence */
rpool_t sm_str_rpool; /* data is allocated from this */

}

3.16.7.1 Constant Strings

Some strings are only created once, then used (read only) and maybe copied, but never modified. Those
strings can be implemented by using reference counting and a simplified version of the general string
abstraction.

struct sm_cstr_S
{

size_t sm_cstr_len; /* current length */
unsigned int sm_cstr_refcnt; /* reference counter */
uchar *sm_cstr_base; /* pointer to byte sequence */

}

Copying is then simply done by incrementing the reference counter. This is useful for identifiers that are
only created once and then read and copied several times.

Sendmail X, May 4, 2005, 11:44 189

Available functions are:

/* create a cstr with a preallocated buffer */
sm_cstr_P sm_cstr_crt(uchar *_str, size_t _len);

/* create a cstr by copying a buffer of a certain size */
sm_cstr_P sm_cstr_scpyn(const char *_src, size_t _n);

/* duplicate a cstr */
sm_cstr_P sm_cstr_dup(sm_cstr_P _src);

/* free a cstr */
void sm_cstr_free(sm_cstr_P _cstr);

size_t sm_cstr_getlen(sm_cstr_P _cstr);
bool sm_cstr_eq(const sm_cstr_P _s1, const sm_cstr_P _s2);

3.16.8 Timed Events

Triggering events at certain times requires either signals or periodic checks of a list which contains the
events (and their times). If we use signals, then the signal handler must be thread-safe (of course). In
a multi-threaded program there is one thread which takes care of signal handling. This thread is only
allowed to use a few functions (signal-safe). If the main program is event-driven, then we can use one
pipe to itself and the signal handler will just write a message to it which says that a timed event occurred.
In that case, the event-loop will trigger due to the I/O operation (ready for reading) and the appropriate
action can be performed.

The alternative is busy-waiting (polling), i.e., use a short timeout in the main event-loop (e.g., one second)
and check whenever the thread awake whether a scheduled action should be performed. This seems to
be more compute-intensive than the above solution.

Another way is to set the timeout to the interval to the next scheduled event. However, this causes slight
problems when new events are added in the mean time that are supposed to be performed earlier than
the previous next event.

Currently the signal-handler approach seems to be the best since it provides a clean interface and it
doesn’t change the main event handler loop logic. Note: take a look at libisc code.

3.16.9 Shared Memory

System V shared memory can be used between unrelated processes (just share the key and give appropriate
access). Other forms of shared memory (mmap()) require a common ancestor, which is available in form
of the supervisor process. However, we have to be careful how such shared memory would be used (we
can’t create more on the fly, it’s a fixed number).

3.16.10 Address Parsing

We need an RFC 2821 and an RFC 2822 parser.

RFC 2821: Routing based on address (MX) and additional rules (configuration by admin).

190 Sendmail X, May 4, 2005, 11:44

RFC 2822: We also need a rewrite engine to modify addresses based on rules (configuration) by the
admin.

3.16.10.1 RFC 2821 parsing

The SMTP server/address resolver needs an RFC 2821 parser to analyze (check for syntactical correctness)
and to decide what to do about addresses (routing to appropriate delivery agent).

Note: the syntax for addresses in the envelope (RFC 2821) and in the headers (RFC 2822) is different,
the latter is almost a superset of the former. In theory we only need an RFC 2821 parser for SMTP server
daemon, but some MTAs may be broken and use RFC 2822 addresses. Should we allow this? Maybe
consider it as an option. This would require that we have a good library to do both where the RFC 2821
API is a subset of the RFC 2822 API.

The parser shouldn’t be too complicated, the syntax is significantly simpler than RFC 2822. Quoting
RFC 2821:

Reverse-path = Path
Forward-path = Path
Path = "<" [A-d-l ":"] Mailbox ">"
A-d-l = At-domain *("," A-d-l)

; Note that this form, the so-called "source route",
; MUST BE accepted, SHOULD NOT be generated, and SHOULD be
; ignored.

At-domain = "@" domain
Domain = (sub-domain 1*("." sub-domain)) / address-literal
sub-domain = Let-dig [Ldh-str]
address-literal = "[" IPv4-address-literal /

IPv6-address-literal /
General-address-literal "]"

Mailbox = Local-part "@" Domain
Local-part = Dot-string / Quoted-string

; MAY be case-sensitive
Dot-string = Atom *("." Atom)
Atom = 1*atext
Quoted-string = DQUOTE *qcontent DQUOTE
String = Atom / Quoted-string

Some elements are not defined in RFC 2821, but RFC 2822; i.e., atext, qcontent.

IPv4-address-literal = Snum 3("." Snum)
IPv6-address-literal = "IPv6:" IPv6-addr
General-address-literal = Standardized-tag ":" 1*dcontent
Standardized-tag = Ldh-str
Snum = 1*3DIGIT ; representing a decimal integer

; value in the range 0 through 255
Let-dig = ALPHA / DIGIT
Ldh-str = *(ALPHA / DIGIT / "-") Let-dig
IPv6-addr = IPv6-full / IPv6-comp / IPv6v4-full / IPv6v4-comp
IPv6-hex = 1*4HEXDIG

Sendmail X, May 4, 2005, 11:44 191

IPv6-full = IPv6-hex 7(":" IPv6-hex)
IPv6-comp = [IPv6-hex *5(":" IPv6-hex)] "::" [IPv6-hex *5(":"

IPv6-hex)]
; The "::" represents at least 2 16-bit groups of zeros
; No more than 6 groups in addition to the "::" may be
; present

IPv6v4-full = IPv6-hex 5(":" IPv6-hex) ":" IPv4-address-literal
IPv6v4-comp = [IPv6-hex *3(":" IPv6-hex)] "::"

[IPv6-hex *3(":" IPv6-hex) ":"] IPv4-address-literal
; The "::" represents at least 2 16-bit groups of zeros
; No more than 4 groups in addition to the "::" and
; IPv4-address-literal may be present

Note about quoting: the addresses

<"abc"@abc.de>
<abc@abc.de>
<\a\b\c@abc.de>

are the same. A string is just quoted because it may contain characters that could be misinterpreted.
The “value” of the string is the string without quotes. Just its representation differs. Hence the parser
(scanner) must get rid of the quotes and the value must be used. The quotes are only necessary for
external representation. We have to be careful when strings with “wierd” characters are used to lookup
data or passed to other programs/functions that may interpret that data, e.g., a shell. The address must
be properly quoted when used externally. In some cases all “dangerous” characters should be replaced
for safety, i.e., a list of “safe” characters exists and each character not in that list is replaced by a safe
one. Whether this replacement is reversible is open for discussion. Some MTAs just use a question mark
as replacement, which of course is not reversible.

3.16.10.2 RFC 2822 parsing

The message submission program needs an RFC 2822 parser to extract addresses from headers as well
from the command line. Moreover, addresses must be brought into a form that is acceptable by RFC
2822 (in headers) and RFC 2821 (for SMTP delivery).

atext = ALPHA / DIGIT / ; Any character except controls,
"!" / "#" / ; SP, and specials.
"$" / "%" / ; Used for atoms
"&" / "’" /
"*" / "+" /
"-" / "/" /
"=" / "?" /
"^" / "_" /
"‘" / "{" /
"|" / "}" /
"~"

atom = [CFWS] 1*atext [CFWS]
dot-atom = [CFWS] dot-atom-text [CFWS]
dot-atom-text = 1*atext *("." 1*atext)

192 Sendmail X, May 4, 2005, 11:44

qtext = NO-WS-CTL / ; Non white space controls
%d33 / ; The rest of the US-ASCII
%d35-91 / ; characters not including "\"
%d93-126 ; or the quote character

qcontent = qtext / quoted-pair
quoted-string = [CFWS]

DQUOTE *([FWS] qcontent) [FWS] DQUOTE
[CFWS]

3.16.10.3 Token handling

Address parsing (RFC 2822/2821) should be based on a tokenized version of the string representation of
an address. Therefore we need a token handling library (compare postfix).

3.16.10.4 Address rewrite engine

Question: can we create only one address rewriting engine or do we need different ones for RFC 2821
and 2822? Question: is it sufficient for the first version to just have a table-driven rewrite engine (only
mapping like postfix, not the full rewrite engine of sendmail 8)?

3.16.11 Internal Communication

The communication between program modules in sendmail X is of course hidden inside a library. This
library presents an API to the modules. In its first implementation, the library will probably use sockets
for the communication.

Note: we may use “sliding windows” just as TCP/IP does to specify the amount of data the other side
can receive. This allows us to send data without overflowing the recipient. Question: can we figure this
out at the lower level?

3.16.11.1 Data Structures for Internal Communication

The data structures for internal communication consist of tagged fields, see also Section 3.13.12. Tagged
fields are used to allow for:

• safety: the type can be checked (against the expected data),

• omission of (sub)fields: data that is not transferred must have a default value,

• compatibility: it might be possible to use modules from different versions and still let them talk to
each other since the fields have unique names.

Each field has a type (probably a unique id), and a length (to avoid parsing). Each field is terminated
by a 0 byte which however only exists for paranoia’s sake. The length should be sufficient, field[length]
must be the 0 byte. Question: do we really want to do this? We certainly don’t want this for scalars
(e.g., integer values). It is useful for character strings, unless we use the string abstractions (see Section
3.16.7). The entire packet has a header that contains the total length, the originator and recipient (each
module in sendmail X has a unique id, which may consist of a module type identifier and a module
instance identifier since there may be several instances of a module), and a protocol version.

Sendmail X, May 4, 2005, 11:44 193

Question: do we need a package header to identify packages? This may be required if “garbled” packages
can be send over one connection. To find the begin of the next package, a linear scan for a package
header would be necessary. TCP guarantees reliable connections (Unix sockets too?), so this may not be
necessary. If a “garbled” package is received, the connection is closed such that the sender has to deal
with the problem.

3.16.11.1.1 Buffer for Internal Communication A record communication buffer (rcb) can be
realized as an extension of the string abstraction (see Section 3.16.7) by using one additional counter
(rw) (or pointer) to keep track of sequential reading out of it.

struct sm_rcb_S
{

size_t sm_rcb_len; /* current length */
size_t sm_rcb_size; /* allocated length */
size_t sm_rcb_maxsz; /* maximum length */
uchar *sm_rcb_base; /* pointer to byte sequence */
rpool_t sm_rcb_rpool; /* data is allocated from this */
int sm_rcb_rw; /* read index/left to write */

}

Invariants:

len ≤ size, size ≤ maxsz

If reading: rw < len. If writing: rw < 0 (no length specified) or rw > size of the data to put into the
RCB.

Basic operations to create and delete RCBs:

new() create a new rcb
free() free an rcb

A RCB can be operated in two different modes, each of which consists of two submodes:

1. decode:

(a) read entire record from file into rcb

(b) decode from rcb

2. encode:

(a) encode data into rcb

(b) write entire rcb to file

For 1a: read record from file: if we do only record oriented operations, then we can use len to write data
into the buffer and rw to keep track of how much data is left to read.

• open for receiving: rcb open rcv(INOUT rcb P rcb): reset (empty) rcb for reading data into it. Set
len = 0 and rw = −1.

194 Sendmail X, May 4, 2005, 11:44

• rcb rcv(INOUT rcb P rcb, IN fd T fd, IN int rs): read data from fd to fill rcb, rs is the initial size
to read.

The first word from the file (which is the record size, see Section 3.13.12) is written into rw (only if
rw = −1). Make sure there is enough space in the buffer (right after the size of the record is read)
without exceeding the maximum size (this may require reallocation); read data from a file and put
it into the buffer (asserting the size will not be exceeded), this may happen in pieces, so len and
rw are updated accordingly. The buffer will be filled until rw = 0. Notice: the initial read may
cause a problem if the number of elements to read is specified too large: it may cause more than
one record to end up in the buffer.

• close after receiving: rcb close rcv(INOUT rcb P rcb): close rcb after reading data into it.

For 1b: After the entire record has been copied into the buffer we can read out of it (for decoding).
Decode from buffer requires the following functionality:

• open for decoding: rcb open dec(INOUT rcb P rcb): reset rcb for decoding data from it; reset rw,
but not len.

• read a string or an integer out of the rcb:

rcb getn(IN rcb P rcb, OUT uchar *buf, IN size t n): read n characters

rcb getint(IN rcb P rcb, OUT int *val): read an integer value

Even if we have a common encoding (e.g., lowest bit) to distingush between integers and strings we
still can’t use one decoding function because we need to pass a buffer and its size for strings to the
function.

• close after for decoding: rcb close dec(INOUT rcb P rcb).

For 2a: encoding into rcb:

• open for encoding; rcb open enc(INOUT rcb P rcb, IN size t rs): prepare rcb for encoding data
into it, rs is the expected record size (0 if not known); reset len, set rw to rs.

• put an integer or a string into the buffer.

rcb putn(IN rcb P rcb, IN uchar *buf, IN size t n): put n characters into rcb at current len

rcb putint(IN rcb P rcb, IN int val): put integer value into rcb at current len

These functions check whether the expected record size is reached unless it is −1.

Question: should we have an additional parameter: record type? Then we would just need one call
(instead of three) to write (encode) one subrecord.

• close after encoding; rcb close enc(INOUT rcb P rcb): write the record size into the first word
(unless done at open()), reset rw.

For 2b: writing to file:

• rcb open snd(INOUT rcb P rcb): open rcb for reading data from it; reset rw, but not len.

Sendmail X, May 4, 2005, 11:44 195

• try to write buffer to file, if it can’t write the entire buffer at once: keep track of the location, write
rest of buffer starting from that location on the next try.

rcb snd(INOUT rcb P rcb, IN fd T fd): read data from rcb and write to fd.

Returns number of bytes left to write, i.e., > 0 if it has to be called again, = 0 if it is done, < 0 on
error.

• rcb close snd(INOUT rcb P rcb): close rcb after reading data from it.

Notice:

• The file oriented operation need to be able to operate on different file types. One of them are file
descriptors, another are state threads files. Yet another one might be sm I/O files (it’s not yet clear
whether we can “hide” the former behind the latter).

• some of the open()/close() functions are identical in functionality. However, if we want to be
paranoid, we can add a status word that tells us in which mode the rcb currently is:

1. NONE: unused (closed or just created)

2. RCV: receiving data from file

3. DEC: decoding data from rcb

4. ENC: encoding data into rcb

5. SND: sending data to file

Then we can check the status in the various operations and return an error if an rcb is in a wrong
state. In this case, the open functions are slightly different; however, this can of course be easily
controlled via a parameter instead of different functions.

The only (important) difference to the string abstraction explained in Section 3.16.7 is to keep track of
sequential reading out of/writing into it. This is similar to I/O buffers (see Section 3.16.3.2).

3.16.11.2 Marking End of Record

As explained in Section 3.13.12 the end of a record should be marked. This is not only useful for
data written to disk but also for data transferred over the network. Even though TCP offers a reliable
connection, there is a change for receiving garbled RCBs, e.g., consider the following situation: a multi-
threaded client sends RCBs to a client, one of the write attempts fails such that a partial RCB is
transmitted, another thread sends an RCB whose begin will then mistaken as the end of the previous
(partial) RCB. Even though the client should stop communicating with the server as soon as the timeout
(write problem) occurs, an end-of-record marker will help to recognize the problem. However, the question
is how to properly implement this. The best approach is to do this completely transparent to the
application. Question: how?

3.16.11.3 A Note about Record Types

As explained in Section 3.13.12 each record entry has a type field that describes the content. There is a
small problem in selecting these type because they can encode information which may as well transported
separately. For example, there might be errors for A, B, C, . . . , then we can have

196 Sendmail X, May 4, 2005, 11:44

1. multiple record types ERR-A, ERR-B, ERR-C, . . . , and the error value; or

2. one record type ERR and A, B, C, . . . , and the error value.

Option 1 is not easily extendible: we need to add record types for each new error and we need to recognize
them on the decoding site (and obviously they have to be generated by the sender). Option 2 would
cause one record type to describe a “compound” field. As long as the type of the subentries is clear this
should not be a problem.

3.16.12 Common API for Storage Libraries (Maps)

There are several libraries that need to be written which provide some kind of storage functionality,
e.g., hash tables, (balanced) trees, RSC (4.3.5). If we can use (almost) the same API for them, then it
can be fairly easy to replace an underlying implementation to trade one storage/access method against
another. This can be useful if different access methods are required. For example, while all of these
provide a simple lookup function (map key to value, i.e., the typical DB functionality), some provide
also additional functionality, or at least a more efficient implementation of certain access methods than
others. This is exemplified by the different Berkeley DB access methods (see [OBS99] and [Sleb]), e.g.,
hash, btree, queue. That API might serve as an example for others that need to be implemented. Starting
with version 4.224 Berkeley DB does support an in-memory database without a backup on disk. If this
option would have been available earlier, it wouldn’t have been necessary to (re-)implement some of the
functionality.

Maps can be considered as a specialized version of (file) I/O: while (file) I/O is in general sequential
(even though positioning can be used and some OS provide record-based I/O), map I/O is based on an
access key (however, sequential access is usually provided too). It might be useful to treat maps as a
subset of the generic (file) I/O layer, i.e., use its open(), close(), read(), write(), etc functions. Todo:
investigate this further as time permits.

Note: there are basically two different kinds of maps that are used:

1. maps to store and retrieve data.

2. maps to (mostly/only) retrieve data.

The first kind is used internally by sendmail X for various purpose to store and access data. The second
kind is used to control the behavior of sendmail X, e.g., to map addresses from one form into another, to
change options based on various keys like the name or IP address of the site to which an connection is
open, etc. Even though it might be useful to distinguish between both, it seems more generic to use one
common API. Maps that don’t provide write access, e.g., a map of valid users usually is not written by
an MTA, simply don’t have the corresponding functions calls and trying to invoke those will trigger an
appropriate error.

The basic API for BDB looks like this:

24DB MPOOLFILE->set flags(): if DB MPOOL NOFILE is set, no backing temporary file will be opened for in-memory
databases, even if they expand to fill the entire cache.

Sendmail X, May 4, 2005, 11:44 197

db create create Create a database handle
DB->open open Open a database
DB->close close Close a database
DB->get lookup Get items from a database
DB->put add Store items into a database
DB->del rm Delete items from a database
DB->remove destroy Remove a database

This doesn’t fully match the naming conventions for sendmail X explained in Section 3.16.1.2; the names
for the latter are listed in the second column.

Additional functions should include walk: walk through all items and apply a function to them, and for
some access methods a way to get elements in a sorted order out of the storage. In Berkeley DB, the
former can be implemented using the cursor functions, the latter works at least if btree is used as access
method.

Generic API proposal:

create() create a new object
destroy() destroy object (other name?)
open() open an object for use, this may perform an implicit create()
close() close an object, can’t be used unless reopened, this does not destroy the object
reopen() close and open an object; this is done only if necessary,

e.g., for a DB if the file on disk has changed
add() add an entry to an object
rm() remove an entry from an object
alloc() allocate an entry and add it to an object
free() free an entry and remove it from an object
lookup() lookup an entry, return the data value
locate() lookup an entry, return the entry
first() return first entry
next() return next entry

Instead of creating a new function name for each map type, the map (context) itself is passed to a generic
function map f(), alternatively the context can provide function pointers such that the functions are
invoked as map ctx->f() (as it is done by BDB, see above).

An application uses the functions as follows:

1. Initialize the map system.

2. Register map implementations.

3. Create a map instance.

4. Optionally set some options, e.g., cache size or size limits.

5. Open the map instance for use.

6. Perform map operations, e.g., lookups, additions, and removals.

7. While performing those operations maybe reopen the map based on a signal or some other event,
e.g., timeout.

8. Close the map instance.

9. Optionally destroy the map, e.g., this could free all the data in the map or unlink the map file.

198 Sendmail X, May 4, 2005, 11:44

10. Terminate the map system.

To simplify the code the following shortcuts might be implemented:

• If open() is passed a NULL map instance, it calls create() internally.

• A parameter for close() determines where it should call destroy() the map instance too. Al-
ternatively destroy() could call close() if that has not been done by the application.

3.16.12.0.1 Reloading a Map Question: which level should handle the reopen() function? It
could be done in the abstraction layer but then it needs to know when to reopen a map. This could be
done by checking where the underlying file has changed, but this is specific to some map implementation,
e.g., Berkeley DB, while a network map does not provide such a way to check. This can be solved as
follows: add a flag that indicates whether the simple check (file changed) should be performed in the
abstraction layer, and add a function pointer to a reopen() function in the map implementation which
will be used if the flag is not set and the function pointer is not NULL. An additional problem is that if
the open() function takes a variable number of arguments, then those need either be resupplied when
reopen() is called, or they need to be stored in the map instance25 (which would make it necessary to
preserve that data across the sequence close(), open() somehow), or they need to be supplied in some
other way. Such “other way” could be separate initialization and option settings functions, e.g., first
create() returns a map context, then various options are set via setoption() which is a polymorphic
function (compare setsockopt(2)) (and has a corresponding map getoption() function), and finally
open() is called with the map context that has all options set in the proper way. Closing a map then
requires either two steps or at least a parameter which indicates whether to discard (destroy) the map
context too. However, this requires that the underlying map implementation actually supports this;
Berkeley DB does not preserve the handle across the close26 function. One way around this is to store
the options in an additional abstraction layer between the map abstraction and the map implementation,
or have a variable sized array of option types and option values in the map abstraction context in
addition to the pointer to the map implementation context. Then the setoption() function could store
the options in that array and reopen() could “replay” the calls to setoption() by going through
that array. Nevertheless, the same argument can be made here: it requires that the underlying map
implementation actually supports a create() and an open() function; if there is only one open()
function that allocates the map context and its internal data while maybe taking several arguments, then
this split can not be done.

Note: it might be useful to have a load() callback for the open() function to initialize data in the
map, e.g., to read key and data pairs from a file. This is especially useful in conjunction with reopen()
to reload a file that has changed.

3.16.12.1 Data Structure for Storage Libraries

The following data seems to be sufficient to describe elements in a storage system (e.g., database):

uchar *STH_key; /* key */
uint32_t STH_key_len; /* length of key */
void *STH_data; /* pointer to data (byte string) */
uint32_t STH_data_len; /* length of data */

25It is impossible in C to store a va list.
26db->close() “frees any allocated resources”

Sendmail X, May 4, 2005, 11:44 199

An alternative is to use the string type described in Section 3.16.7. The advantage of doing so is that
the functions for it can be reused.

Berkeley DB uses the following structure (called DBT) to describe elements in the database as well as
keys:

typedef struct {
void *data; /* pointer to byte string */
u_int32_t size; /* length of data */
u_int32_t ulen; /* length of user buffer */
u_int32_t dlen; /* length of partial record */
u_int32_t doff; /* offset of partial record */
u_int32_t flags; /* various flags */

} DBT;

3.16.12.1.1 Memory Management in Storage Libraries For an internal read/write map the
storage for the key itself is managed by the library or by the application, the data storage is by default
managed by the application, i.e., the data must be persistent as long as the map is used. This is in contrast
to BDB which manages the data itself since it has to store it on disk. The default can be changed by
setting flags in the open() call to indicate whether the application supplies memory for storing the data in
which case another field specifies the length of that memory section. This is done by the DEFEDB library.
It is useful to provide callbacks for data allocation/deallocation27 such that the library can (indirectly)
manage the data storage if necessary, e.g., if it is supposed to automagically remove outdated entries, or
if it can update an existing entry or create new entries based on whether the add function should allow
for this, and for the destroy function to remove all allocated data (memory).

A map context should contain flags that describe how keys and data is handled. First a map implemen-
tation needs to specify whether the implementation can actually perform memory management functions
(it may not have the required code). If it does not provide memory management function, then the
application must take care of it. When a map is opened the application specifies whether keys and data
are (de)allocated by the library (if available). The flags are per map instance, not per key/data pair;
this would require to store the information in the key or data itself which would complicate the storage
interface, e.g., it would have to encode the flags somehow and make sure that the application will only get
the relevant part, not the additional control information (compare allocation contexts for malloc(3)).

Note: if the map abstraction uses the string type described in Section 3.16.7 then the memory management
functions are those provided by the string implementation, there is no need to have additional functions
and hence no function pointers are needed for this.

3.16.12.2 Abstraction Layer for Storage Libraries

An abstraction layer should be placed on top of the various storages libraries to access the latter through
a generic interface. This is similar to the Berkeley DB layer which specifies which type of database to
use (open). To access the underlying implementation two methods are common:

1. function pointers (e.g., Berkeley DB). In this case the storage handle contains function pointers
that can be called from the application, e.g., STH->sth lookup().

27BDB provides a function to specify malloc(2), realloc(2), and free(2) methods.

200 Sendmail X, May 4, 2005, 11:44

2. dispatch functions (e.g., sendmail 8 map functions). The application calls a generic function, e.g.,
map lookup() which receives the storage handle as one parameter. That handle in turn is used
internally to invoke the correct function.

The first method avoids an additional indirection, but the second can perform generic operations in
one place before/after calling the specific storage library function. This is helpful for something like an
expand function (sm map rewrite()) that replaces certain parts of the result by (parts of) the key, e.g.,
positional parameters (“%n” in sendmail 8). Moreover, it makes it easier to deal with functions that
aren’t available because the wrapper can check for that (otherwise the function pointer must point to a
dummy function).

The abstraction layer needs to provide functions to

• initialize and terminate itself; sm maps init(sm maps ctx *), sm maps terminate(sm maps ctx).

• (un)register (add/remove) a map class by name, e.g., “hash”, “tree”, or “ldap”; sm maps add(sm maps ctx,
sm mapc ctx), sm maps rm(sm maps ctx, sm mapc ctx).

• lookup a map by name and return the storage handle; sm maps lookup(sm maps ctx, str, sm mapc ctx
*),

For case 2 the abstraction layer also needs to provide the generic map functions (see Section 3.16.12).

Convention: functions that operate on

• the context for all maps use sm maps *(sm maps ctx, . . .),

• a map class use sm mapc *(sm mapc ctx, . . .),

• a single map (an instance of a map class) use sm map *(sm map ctx, . . .).

Question: should the distinction be made clearer than just a single character?

In its simplest form the maps context contains a list or a hash table (using the type as key) of registered
map classes:

struct sm_maps_S
{

List/Hash sm_mapc_P;
}

A map class should look like this:

struct sm_mapc_S
{

sm_cstr_P sm_mapc_type;
uint32_t sm_mapc_flags;

sm_map_create_F sm_mapc_createf();
sm_map_destroy_F sm_mapc_destroyf();
sm_map_open_F sm_mapc_openf();
sm_map_load_F sm_mapc_loadf();

Sendmail X, May 4, 2005, 11:44 201

sm_map_close_F sm_mapc_closef();
sm_map_reopen_F sm_mapc_reopenf();
sm_map_add_F sm_mapc_addf();
sm_map_rm_F sm_mapc_rmf();
sm_map_alloc_F sm_mapc_allocf();
sm_map_free_F sm_mapc_freef();
sm_map_lookup_F sm_mapc_lookupf();
sm_map_locate_F sm_mapc_locatef();
sm_map_first_F sm_mapc_firstf();
sm_map_next_F sm_mapc_nextf();

}

Flags for map classes describe the capabilities of a map class, e.g., some of these are:

MAPC-ALLOCKEY Map can allocate storage for key
MAPC-ALLOCDATA Map can allocate storage for data
MAPC-FREEKEY Map can free storage for key
MAPC-FREEDATA Map can free storage for data
MAPC-CLOSEFREEKEY Map must free storage for key on close (destroy?)
MAPC-CLOSEFREEDATA Map must free storage for data on close (destroy?)
MAPC-NORMAL-REOPEN Map can be reopened using close/open

These flags indicate whether the library can perform memory management functions. If it does not set
those flags, then the application must take care of it.

A map is an instance of a map class:

struct sm_map_S
{

sm_cstr_P sm_map_name;
sm_cstr_P sm_map_type;
sm_mapc_P sm_map_class;
char *sm_map_path;
uint32_t sm_map_flags;
uint32_t sm_map_openflags; /* flags when open() was called */
uint32_t sm_map_caps; /* capabilities */
int sm_map_mode;
time_T sm_map_mtime; /* mtime when opened */
ino_t sm_map_ino; /* inode of file */
void *sm_map_db; /* for use by map implementation */

void *sm_map_app_ctx;

/* array of option types and option values */
sm_map_opt_T sm_map_opts[SM_MAP_MAX_OPT];

}

There are different type of flags for maps: some describe the state of the map, some describe the func-
tionalities (capabilities) that are offered. Capabilities are also something that can be requested when a
map is opened, if a map does not offer the requested functionality, the open fails. Note: it might be
useful to have a query function that returns the capabilities of a map class.

202 Sendmail X, May 4, 2005, 11:44

Flags that describe the state of a map are: (some of these can probably be collapsed if locking is used)

CREATED Map has been created
INITIALIZED Map has been initialized
OPEN Map is open
OPENBOGUS open failed, do not call close
CLOSING map is being closed
CLOSED map is closed
VALID this entry is valid
WRITABLE open for writing
ALIAS this is an alias file

Generic flags (options) that describe how the map abstraction layer should handle various operations:

INCLNULL include nul byte in key
OPTIONAL don’t complain if map can’t be opened
NOFOLDCASE don’t fold case in keys
MATCHONLY don’t use the map value
ALIAS this is an alias file
TRY0NUL try without nul byte
TRY1NUL try with nul byte
LOCKED this map is currently locked
KEEPQUOTES don’t dequote key before lookup
NODEFER don’t defer if map lookup fails
SINGLEMATCH successful only if match returns exactly one key

The alloc() and free() functions receive the application context as additional parameter:
typedef void *(*sm map * alloc F)(size t size, void *app ctx);
typedef void (*sm map * free F)(void *ptr, void *app ctx);

The create() function creates a map instance:

typedef sm ret T (*sm map create F)(sm mapc P mapc, sm cstr P name, sm cstr P type, uint32 t
flags, sm map P *pmap, ...);

The open() function opens a map for usage:

typedef sm ret T (*sm map open F)(sm mapc P mapc, sm cstr P name, sm cstr P type, uint32 t flags,
char *path, int mode, sm map P *pmap);

Question: what is the exact meaning of the parameters, especially name, flags, path, and mode? name:
name of the map, can be used for socket map? This is mostly a descriptive parameter. path: if there is
a file on disk for the map this is the name of that file. So what are flags and mode? mode could have
the same meaning as the mode parameter of the Unix system call chmod(2). flags could have the same
meaning as the flags parameter of the Unix system call open(2), e.g.,

Sendmail X, May 4, 2005, 11:44 203

O RDONLY open for reading only
O WRONLY open for writing only
O RDWR open for reading and writing
O NONBLOCK do not block on open
O APPEND append on each write
O CREAT create file if it does not exist
O TRUNC truncate size to 0
O EXCL error if create and file exists
O SHLOCK atomically obtain a shared lock
O EXLOCK atomically obtain an exclusive lock
O DIRECT eliminate or reduce cache effects
O FSYNC synchronous writes
O NOFOLLOW do not follow symlinks

Whether these flags actually make sense depends on the underlying map implementation. Questions:

• Can we specify a superset of the flags, i.e., the union of all flags for all map implementation, or
should those flags be map specific?

• Maybe there should be a common set that makes sense for most map types (e.g., RDONLY, NON-
BLOCK, CREAT) and then map specific flags that could even overlap?

• What should happen if a flag cannot be honored by a map implementation? For some it makes
sense to return an error (e.g., a read-only map cannot be open in write mode), for others it might
be ok to simply ignore the flags.

Here is an example of the valid flags for a map implementation (Berkeley DB), some of which have
equivalents from open(2):

DB AUTO COMMIT
DB CREATE O CREAT
DB EXCL O EXCL
DB DIRTY READ
DB NOMMAP
DB RDONLY O RDONLY
DB THREAD
DB TRUNCATE O TRUNCATE

The load() function needs the map context and the name of the file from which to read the data:

typedef sm ret T (*sm map load F)(sm map P map, char *path);

The close() function requires only the map context:

typedef sm ret T (*sm map close F)(sm map P map);

Adding an item requires the map context, the key, and the data (note: see elsewhere about whether the
map needs to copy key or data).

typedef sm ret T (*sm map add F)(sm map P map, sm map key key, sm map data data, unsigned int
flags);

Removing an item requires the map context and the key:

typedef sm ret T (*sm map rm F)(sm map P map, sm map key key);

typedef sm ret T (*sm map alloc F)(sm map P map, sm map entry *pentry);

204 Sendmail X, May 4, 2005, 11:44

typedef sm ret T (*sm map free F)(sm map P map, sm map entry entry);

typedef sm ret T (*sm map lookup F)(sm map P map, sm map key key, sm map data *pdata);

typedef sm ret T (*sm map locate F)(sm map P map, sm map key key, sm map entry *pentry);

typedef sm ret T (*sm map first F)(sm map P map, sm map cursor *pmap cursor, sm map entry *pentry);

typedef sm ret T (*sm map next F)(sm map P map, sm map cursor *pmap cursor, sm map entry *pentry);

Notes:

• if some map types have wildly varying options or arguments then it might be necessary to provide
individual sm map parse args)() functions to deal with those differences.

• some functions need flags, e.g., sm map add(), which require that the abstraction layer defines
a superset of all flags and the individual implementations translate the common flags into their
individual representations. In some cases the flags are a combination of values and bitfields; this is
at least the case for Berkeley DB.

• it might be necessary to have an “intermediate” structure that contains only a pointer to sm map T
and a reference count if a map can be registered under several names.

struct sm_mapn_S
{

sm_map_P sm_mapn_map;
uint32_T sm_mapn_refcnt;

}

3.16.12.3 Dynamic (Re)Open of Maps

sendmail 8 opens map dynamically on demand. This can be useful if some maps are not needed in
some processes. Moreover, some map types do not work very well when shared between processes. For
sendmail X it can be useful to close an reopen maps in case of errors, e.g., network communication
problems. Question: which level should handle this: the abstraction layer or the implementation? If
it’s done in the abstraction layer then code duplication can be avoided, however, it’s not yet clear what
the proper API for this functionality is. It seems that using sm map close() and sm map open)() is not
appropriate because we already have the map itself. Would sm map reopen() (see Section 3.16.12.0.1)
be the appropriate interface?

3.16.12.4 Asynchronous Operation of Maps

The previous sections describe a synchronous map interface. Section 3.1.1 contains a generic description
of asynchronous functions. The map abstraction layer can either provide just a synchronous map API,
or it can provide the more generic approach described in Section 3.1.1, however, it should let the upper
layer “see” whether the lower level implements synchronous or asynchronous operations.

3.16.12.5 Multi-Threading

In most cases access to maps must be protected by mutexes. This can be either provided by the abstraction
layer or by the low-level implementation. Doing it in the former minimizes the amount of code duplication.

Sendmail X, May 4, 2005, 11:44 205

3.16.12.6 Multiple Map Instances

Some map implementations may be slow (e.g., network based lookups) and hence some kind of enhance-
ment is required. One way to do this is to issue multiple requests concurrently. Besides asynchronous
lookups (which are currently not supported, see Section 3.16.12.4) this can be achieved by having multiple
map instances of the same map type provided the underlying implementation allows for that.

It would be very useful if this can be provided by the map abstraction layer to avoid having this imple-
mented several times in the low level map types.

Question: how to do this properly? The map type needs to specify that it offers this functionality and
some useful upper limit for the number of concurrent maps28.

3.16.13 DNS

Unfortunately older DNS resolvers (BIND 4.x) are not thread safe. The resolver that comes with BIND 8
(and 9) is supposed to be thread safe, but even FreeBSD 4.7 does not seem to support it (res nsearch(3)
is not in any library). In general there are two options to use DNS:

1. use a thread safe resolver, e.g., by including the necessary parts of BIND 8, and create several
threads as DNS resolvers which may block.

2. do it yourself: write an asynchronous DNS resolver. Use res mkquery() to construct a DNS query
and send it to a DNS server. If the event thread library (see Section 3.20.5) is used then a single
task can be used for the communication with the DNS server. Several tasks may be started to
communicate with several DNS servers. Moreover, there is the slight complication of using UDP or
TCP, which may require yet another (set of) task(s).

Option 1 does not directly work for applications that use state threads (see Section 3.20.3.1), the com-
munication must at least be modified to use state threads I/O to avoid blocking of the entire application.
Therefore it is probably not much different to chose option 2, which would be a customized (and hopefully
simpler) version of the resolver library. This option however causes a small problem: how should the
caller, i.e., the task that requested a DNS lookup, be informed about the result? See Section 3.1.1.1 for
a general description of this problem. We could integrate the functionality directly into the application;
e.g., for an application which uses event threads this is exactly the activation sequence that is used: a
request is send, the task waits for an I/O event and then is activated to perform the necessary operations.
However, this tightly integrates the DNS resolver functionality into the application which may not be
the best approach. Alternatively the DNS request can include a context and a callback which is invoked
(with the result and the context) by the DNS task. The latter is useful for an application using the event
thread library. For a state threads application a different notification mechanism is used, i.e., a condition
variable. See Section 4.1.2 for a description of the possible implementations.

A DNS request contains the following elements:

28Specifying one as limit means that this is a single instance map only, hence no additional flag is necessary.

206 Sendmail X, May 4, 2005, 11:44

name hostname/domain to resolve
type request type (MX, A, AAAA, ...)
flags flags (perform recursion, CNAME, ...)
dns-ctx DNS resolver context
event thread:
app-ctx application context
app-callback application callback
state threads:
app-cond condition variable to trigger

The DNS resolver context is created by a dns ctx new() function and contains at least these elements:

DNS servers list of DNS servers to contact
flags flags (use TCP, ...)

Available functions include:

dns mgr ctx new() create a new DNS manager context
dns mgr ctx free() free (delete) DNS manager context
dns rslv new() create a new DNS resolver context
dns rslv free() free (delete) DNS resolver context
dns tsk new() create a new DNS task
dns tsk free() free (delete) DNS task
dns req add() send DNS request; this may either receive a DNS request structure

as parameter or the individual elements

There should be only one DNS task since it will manage all DNS requests. However, this causes problems
due to:

• Multiple DNS servers: these need different tasks, at least in the event thread model due to the I/O
activation.

• UDP vs TCP communication: different file descriptors need different tasks (in the event thread
model, see above).

If multiple DNS resolver tasks are used then there is the problem of distributing the requests between
them and of a fallback in case of problems, e.g., timeout or truncations (UDP).

A DNS resolver task should have the following context:

DNS server which server? (fd is stored in task context)
flags flags (UDP, TCP, ...)
dns-ctx DNS resolver context
error counters number of timeouts etc

If too many errors occurred the task may terminate itself after it created a new task using a different
DNS server.

3.16.14 Timeouts

Many functions can cause temporary errors of which timeouts, especially from asynchronous functions,
are hard to handle. Question: should the caller implement a timeout or the callee? That is, should
the caller set some timestamp on its request and the data where the result should be stored and check
this periodically or should the callee implement the timeout and guarantee returning a result (even if it

Sendmail X, May 4, 2005, 11:44 207

is just an error code) to the caller? The latter looks like the better solution because it avoids periodic
scanning in the application (caller), however, then it needs to be in the callee, which at least has some
centralized list of outstanding requests. The caller has to make sure that its open requests are removed
after some time, e.g., some sort of garbage collection is required. If the caller removes a request but the
callee returns a result later on, then the caller must handle this properly; in the simplest case it can just
ignore the result. A more sophisticated approach would use a cancel request() function such that the
request is also discarded by the callee.

In some cases the caller can easily implement a timeout, e.g., SMTPS does this when it waits for a reply
from QMGR. If the reply does not arrive within a time limit, then the SMTP server returns a temporary
error code to the client.

3.16.15 Misc

Todo: structure this.

• Sockets (fd) can be passed to other (unrelated) processes using sendmsg() etc., see [Ste92]. One
listener process – another smtp server? How to do that on NT? According to someone who knows
NT it can be done.

• event library: should be a fairly abstract model so we can use select(), poll(), kqueue(), I/O
completion? Note: take also a look at libisc code and the MMA.

• thread library (NT/Unix),

• I/O library, see libsm/. Must made NT compatible, no extra NT layer underneath. More function-
ality: no read/write in sendmail, sm * instead, etc. write/read/fsync/etc with “please do it till”,
so the library can order and group these functions

For example: after final dot a message must (probably) be fsync()ed, but we don’t want to do this
for each individually, but maybe a group. Then we use fsync(within-10-seconds) and the library
can group several several requests together (compare softupdates).

• I/O buffering: how about a ring buffer? Make it twice as big as the maximum size, so it can be
accessed as an array. If we write beyond the middle (the “official” end), we must write the data
twice: middle + x and start + x. This way we can access the buffer without worrying about wrap
around. Advantage: fast read access. Disadvantage: ugly for writing, twice as much space.

• milter read/write: almost the same in mta and milter? functions to open sockets based on textual
specifications: similar/same in many programs → library generic listener? (compare mapd, milter,
libsmi)

• Generic interface via sockets: define a generic protocol similar to milter. make sure it’s extensible
(version, offered options, required options, i.e., option negotation)

• Configuration parser: the parser of the mta is ugly...

• Asynchronous DNS library Note: take a look at lwres in BIND 9.

208 Sendmail X, May 4, 2005, 11:44

3.16.16 Logging

3.16.16.1 ISC Logging

ISC [ISC01] logging uses a context (type isc log t), a configuration (type isc logconfig t), categories
and modules, and channels.

Channels specify where and how to log entries:

<channel> ::= "channel" <channel_name> "{"
("file" <path_name>

["versions" (<number> | "unlimited")]
["size" <size_spec>]

| "syslog" <syslog_facility>
| "stderr"
| "null");

["severity" <priority>;]
["print-category" <bool>;]
["print-severity" <bool>;]
["print-time" <bool>;]

"}";
<priority> ::= "critical" | "error" | "warning" | "notice" |

"info" | "debug" [<level>] | "dynamic"

For each category a logging statement specifies where to log entries for that category:

<logging> ::= "category" <category_name> { <channel_name_list> };

Categories are “global” for a software package, i.e., there is a common superset of all categories for all
parts of the package. Some parts may only use a subset, but the meaning of a category must be consistent
across all parts, otherwise the logging configuration will cause problems (at least inconsistencies). Modules
are use by the software (libraries etc) to describe from which part of the software a logging entry has
been made.

The API is as follows:

• Create and delete a logging context:

isc_log_create(isc_mem_t *mctx, isc_log_t **lctxp, isc_logconfig_t **lcfgp);
isc_log_destroy(isc_log_t **lctxp);

• To manipulate logging configurations these functions are available:

isc_logconfig_create(isc_log_t *lctx, isc_logconfig_t **lcfgp);
isc_logconfig_use(isc_log_t *lctx, isc_logconfig_t *lcfg);
isc_logconfig_get(isc_log_t *lctx);
isc_logconfig_destroy(isc_logconfig_t **lcfgp);

• To register categories and modules:

Sendmail X, May 4, 2005, 11:44 209

isc_log_registercategories(isc_log_t *lctx, isc_logcategory_t categories[]);
isc_log_registermodules(isc_log_t *lctx, isc_logmodule_t modules[]);

• To create and use channels:

isc_log_createchannel(isc_logconfig_t *lcfg, const char *name,
unsigned int type, int priority,
const isc_logdestination_t *destination,
unsigned int flags)

isc_log_usechannel(isc_logconfig_t *lcfg, const char *name,
const isc_logcategory_t *category,
const isc_logmodule_t *module)

• To actually write a logfile entry:

isc_log_write(isc_log_t *lctx, isc_logcategory_t *category,
isc_logmodule_t *module, int priority, const char *format, ...)

isc_log_vwrite(isc_log_t *lctx, isc_logcategory_t *category,
isc_logmodule_t *module, int priority,
const char *format, va_list args)

• Miscellaneous functions:

isc_log_setdebuglevel(isc_log_t *lctx, unsigned int level);
isc_log_getdebuglevel(isc_log_t *lctx);

isc_log_wouldlog(isc_log_t *lctx, int priority);

isc_log_setduplicateinterval(isc_logconfig_t *lcfg, unsigned int interval);
isc_log_getduplicateinterval(isc_logconfig_t *lcfg);

isc_log_settag(isc_logconfig_t *lcfg, const char *tag);
isc_log_gettag(isc_logconfig_t *lcfg);

isc_log_opensyslog(const char *tag, int options, int facility);
isc_log_closefilelogs(isc_log_t *lctx);

isc_log_categorybyname(isc_log_t *lctx, const char *name);
isc_log_modulebyname(isc_log_t *lctx, const char *name);

3.17 Modules

There are some technical problems that must be solved by a clean design. For example, in sendmail
8.12 the function that returns error messages for error codes includes the basic OS error codes but also
extensions like LDAP if it has been compiled in. This makes it hard to reuse that library function in
different programs that don’t want to use LDAP because it will be linked in since it is referenced in the
error message function. This must be avoided for obvious reasons.

One possible solution is to have a function list where modules register their error conversion functions.
However, this requires that the error codes are disjunct. This can be achieved as explained in Section
3.15.2. So the current approach (having a “global’ error conversion function) doesn’t work in general.
The error conversion must be done locally and the error string must be properly propagated.

210 Sendmail X, May 4, 2005, 11:44

3.18 Building sendmail X

Question: how do we build sendmail X on different systems? Currently we have one big file (conf.h)
with a lot of OS-specific definitions and several OS-specific include files (os/sm os OS.h). However, this
is ugly and hard to maintain. We should use something like autoconf to automagically generate the
necessary defines on the build system. This should minimize our maintainance overhead, esp. if it also
tests whether the feature actually works.

3.18.1 autotools

Since we do not have enough man power to develop yet another build system and since our current system
is completely static, we will use the GNU autotools (automake, autoconf, etc) for sendmail X. We already
have a (partial) patch for sendmail 8 to use autoconf etc (contributed by Mark D. Roth). We can use
that as a basis for the build configuration of sendmail X.

Interestingly enough, most other open source MTAs use their own build system. However, BIND 9 and
Courier MTA use also autoconf.

Note: there are some things which can’t be solved by using autoconf. Those are features of an OS that
cannot be (easily or at all) determined by a test program. Examples for these are:

• Stack growth direction (required by state threads).

• Inheritance of non-blocking state through accept(), i.e., if the socket on which connections are
accepted is set to non-blocking, will the new socket be also non-blocking?

• Serialize accept() (see state threads).

• Anonymous memory mapping is slightly different on SVR4 and BSD4.3 derived platforms.

In those case we need to provide the data in some script (config.cache?) that can be easily used by
configure. The data should probably be organized according to the output of config.guess: “CPU-
VENDOR-OS”, where OS can be “SYSTEM” or “KERNEL-SYSTEM”.

3.19 Operating System Calls

This section contains hints about some operating system calls, i.e., how they can be used.

3.19.1 General Hints

This section should contain only standard (POSIX?) behavior, nothing specific to some operating system.
See the next section for the latter.

Todo: structure this and then use it properly.

• Socket I/O: modern OS can use SO SNDTIMEO, SO RCVTIMEO to impose timeouts.

• accept(2):

Sendmail X, May 4, 2005, 11:44 211

(OpenBSD man page, should apply to all OS) If the socket is marked non-blocking and
no pending connections are present on the queue, accept() returns an error as described
below.

It is possible to select(2) or poll(2) a socket for the purposes of doing an accept() by
selecting it for read.

One can obtain user connection request data without confirming the connection by issuing
a recvmsg(2) call with an msg iovlen of 0 and a nonzero msg controllen, or by issuing a
getsockopt(2) request. Similarly, one can provide user connection rejection information
by issuing a sendmsg(2) call with providing only the control information, or by calling
setsockopt(2).

Question about the last sentence: how to do this and is it portable?

3.19.2 Operating System Specific Hints

This section contains hints about the behavior of some system calls on certain operating system. That
is, anything that is interesting with respect to the use of system calls in sendmail X. For example: don’t
use call xzy in these situations on this OS.

Todo: structure this.

• select(2): OpenBSD (2.8): Internally to the kernel, select() works poorly if multiple processes wait
on the same file descriptor.

• FreeBSD: send(2)/recv(2) can be used to obtain the user-id of a process that is connected to a
local socket. This would be useful to allow mail submission via a local socket and obtain the user
credentials. However, FreeBSD seems to be the only OS that supports this.

3.20 Worker Threads

Just some unsorted notes about worker threads.

We have a pool of worker threads. Can/should this grow/shrink dynamically? In first attempt: no, but
the data structures should be flexible. We may use fixed size arrays because the number of threads will
possibly neither vary much nor will it be very large. However, fixed size doesn’t refer to compile time,
but configuration (start) time.

We have a set of tasks. This set will vary (widely) over time. It will have a fixed upper limit (configuration
time), which depends for example on the number of available resources of the machine/OS, e.g., file
descriptors, memory.

We need a queue of runnable tasks (do we need/want multiple queues? Do we want/need prioritized
queues?). Whenever a task becomes active (in our case usually: I/O is possible) then it will be added
to the “run” queue (putwork()). A thread that has nothing to do, looks for work by calling getwork().
These two functions access the queue (which of course is protected by a condition variable).

Maybe we can create some shortcuts (e.g., if a task becomes runnable and there is an inactive worker
thread, give it directly to it), but that’s probably not worth the effort (at least in the first version).

212 Sendmail X, May 4, 2005, 11:44

3.20.1 SMTP Server and Worker Threads

A SMTP server is responsible for a SMTP session. As such it has a file descriptor (fd) that denotes the
connection with the client. The server reads commands from that fd and answers accordingly. This seems
to be a completely I/O driven process and hence it should be controlled by one thread that is watching
I/O activities. This assumes that local operations are fast enough or that they can be controlled by the
same loop.

There is one control thread that does something like this:

while (!stop)
{
check for I/O activity
- timeout? check whether a connection has really timed out

(inactive for too long)
- input on fd:

lookup context that takes care of this fd
add context to runnable queue

- fd ready for output:
lookup context that takes care of this fd
add context to runnable queue

- others?
}

Question: do we remove fd from the watch-set when we schedule work for it? If so: who puts it back? A
worker thread when it performed the work?

The worker threads just do:

while (!stop)
{
get_work(&ctx);
ctx->perform_action(ctx);

}

See also Section 3.16.4 about programming problems.

3.20.2 Worker Thread Library

It would be nice to build a skeleton library that implements this model. It then can be filled in with the
appropriate data structure, that contain (links to) the actual data that is needed.

It would be even better to implement the generic model (multiple, pre-forked processes with worker
threads) as a skeleton. This should be written general enough such that it can be tweaked (run
time/compile time) to extreme situations, i.e., one process or one thread. The latter is probably not
possible with this model, since there must be at least one control thread and one worker thread. Usually
there’s also a third thread that deals with signals.

However, this generic model could be reused in other situations, e.g., the first candidate would be libmilter.

Sendmail X, May 4, 2005, 11:44 213

3.20.3 Thread Libraries

This section contains some comments about available thread libraries. We try to investigate whether
those libraries are suitable for use in sendmail X, and if so, for which components.

3.20.3.1 State Threads for Internet Applications

Some comments about [SGI01]: State Threads (ST) for Internet Applications (IA).

We assume that the performance of an IA is constrained by available CPU cycles rather than
network bandwidth or disk I/O (that is, CPU is a bottleneck resource).

This isn’t true for SMTP servers in general, they are disk I/O bound. Does this change the suitability of
state threads for SMTPS?

The state of each concurrent session includes its stack environment (stack pointer, program
counter, CPU registers) and its stack. Conceptually, a thread context switch can be viewed as
a process changing its state. There are no kernel entities involved other than processes. Unlike
other general-purpose threading libraries, the State Threads library is fully deterministic. The
thread context switch (process state change) can only happen in a well-known set of functions
(at I/O points or at explicit synchronization points). As a result, process-specific global data
does not have to be protected by mutual exclusion locks in most cases. The entire application
is free to use all the static variables and non-reentrant library functions it wants, greatly
simplifying programming and debugging while increasing performance.

The application program must be extremely aware of this! For example: x = GlobalVar; y = f(x);
GlobalVar = y; is “dangerous” if f() has a “synchronization point”.

Note: Any blocking call must be converted into an I/O event, otherwise the entire process will block,
because scheduling is based on asynchronous I/O. This doesn’t happen with POSIX threads. Does this
make ST unusable for the SMTPS? For example, fsync() may cause a problem. Question: can we combine
ST and POSIX threads? The latter would be used for blocking calls, e.g., fsync(), maybe read()/write()
to disk, or compute-intensive operations, e.g., cryptographic operations during TLS handshake. Answer:
no [She01a].

Note: if you link with a library that does network I/O, it must use the I/O calls of ST [She01b]:

This is a general problem – external libraries should conform to the core server architecture.
E.g., if the core server uses POSIX threads, all libraries must be thread-safe and if the core
server is ST-based, all libraries must use ST socket I/O.

That might be an even bigger problem than the compute-intensive operations. However, those libraries
might only be used in the address resolver.

3.20.4 Dealing with Blocking Sections for Worker Threads

Since purely event based programming is hard as explained in Section 3.16.4, other approaches have been
suggested.

214 Sendmail X, May 4, 2005, 11:44

The problems with a programming model that uses one thread for each connection have already been
mentioned in Section 2.5.2, 4a. Additionally, the scheduling of those threads is entirely up to the OS (or
the thread library).

We would like to reduce the number of threads without having to resort to the complicated event based
programming model. Hence we use a worker model, but we do not need to split functions when they
perform a blocking call. Instead, we add some mechanism such that the worker thread library “knows”
whenever a thread executes those (compute intensive or blocking) functions. This “helps” the OS/thread
library to schedule threads by restricting the number of threads in those sections (regions).

3.20.4.1 Worker Threads with Semaphores

One way to deal with the problem explained above is to protect those regions by counting semaphores to
limit the number of threads that can execute those (compute intensive or blocking) functions.

Example: we have one counting semaphore (iosem) for events that must be taken care of and one
(compsem) for a compute intensive section. Before a worker thread takes a task out of the queue in
which the event scheduler added them, it must acquire iosem. When a thread wants to enter the compute
intensive section, it releases iosem (thus another worker thread can take care of an event task), and
acquires compsem, which may cause it to block (thus allowing another thread to run). After the thread
finished the compute intensive section, it releases compsem and acquires iosem again before continuing.

Notice: it is still possible that the OS scheduler will let a compute intensive operation continue without
switching to another thread. Scheduling threads is usually cooperative, not time-sliced. Hence we may
have a similar problem here as for state threads.

3.20.4.2 Worker Threads with Dynamic Limits

Another way to deal with tasks that can block is to increase the number of allowed threads dynamically
whenever a task enters a code section in which it may block. When it leaves that code section, the
number of allowed threads is decreased again.

Note: this looks like a very simple solution to deal with threads that can block, however, there are some
details that need to be handled properly. For example, there can be many threads which wait for an event
and hence each of them increases the number of allowed threads such that the system can continue to
operate. Next all of the threads can be unblocked because the events for which they are waiting occurred
— e.g., the DNS library answers requests for the same item all at once — hence the number of allowed
threads is decreased significantly, such that there are more current threads than allowed threads. If the
tasks that have been waiting for the events terminate almost immediately, e.g., just prepare the results
for sending back to the clients, then the worker threads that executed those tasks become idle, but the
number of current tasks exceeds the allow limit. Hence the scheduling of new tasks must not just take
the number of current tasks and the allowed number of tasks into account but also the number of idle
tasks that can be reused. However, instead of checking whether the number of idle tasks is greater than
zero the value should be compared with the number of allowed tasks. The intention is that the number
of active tasks is less than the number of allowed tasks.

3.20.4.3 Counting Active Threads

Instead of changing the limits of allowed threads, it might be simpler to count the number of active
threads, especially considering the last paragraph in the previous section. Initially the number of active

Sendmail X, May 4, 2005, 11:44 215

threads is obviously zero. Whenever a worker executes a task, the number is increased, and decreased
then the (user) function returns. The number of active threads is decreased whenever a task enters a
code section in which it blocks, and increased after it unblocks.

New tasks can be scheduled if the number of active tasks (instead of the number of total/current tasks)
is less than the number of allowed tasks. This check is easier than the one described in the previous
section.

3.20.4.4 Summary: Dealing with Blocking Sections for Worker Threads

Only the proposal explained in Section 3.20.4.1 actually restricts the number of threads that may perform
a compute intensive function. None of the proposals however restricts the number of threads because
there can always be threads that are blocked waiting to acquire a semaphore or waiting for a condition.
To avoid this, functions must actually be written in a different style (as “continuations”). However, even
that approach does not solve all the problems because in some cases it is impossible to know at the
application level whether a (library) function may block.

3.20.5 Event Thread Library

An event thread library provides the basic framework for a worker based thread pool that is driven by
I/O events and by wakeup times for tasks.

3.20.5.1 Overview

The library uses a general context that describes one event thread system and a per task context. It
maintains two queues: a run queue of tasks that can be executed, and a wait queue of tasks that wait for
some event (IS-READABLE, IS-WRITABLE, TIMEOUT, NEW-CONNECTION (listen())). Each task
is at most in one of the queues at each time; if it is taken out of a queue, it is under the sole control of
the function that removed it from the queue. If this model can be achieved then no per-task mutex is
required, i.e., access to a task is either protected by the mutex for the queue it is in or is is “protected”
by the fact that it isn’t in a queue.

3.20.5.1.1 Worker Threads The system maintains some number of worker threads between the
specified minimum and maximum. Idle threads vanish after some timeout until the minimum number
is reached. An application first initializes the library (evthr init()), then it creates at least one task
(evthr task new()), and thereafter calls evthr loop() which in turn monitors the desired events (I/O,
timeout) and invokes the registered callback functions. Those callback functions return a result which
indicates what should happen next with the task:

flag meaning
OK do nothing, task has been taken care of
WAITQ put in wait queue
RUNQ put in run queue
SLPQ sleep for a while
DEL delete task
TERM terminate event thread loop

216 Sendmail X, May 4, 2005, 11:44

3.20.5.1.2 Changing Event Flags Additionally the task may want to change the events it is waiting
for. This can be accomplished in several ways:

1. Direct modification of the event flags in the task; this is feasible if the access model given above
can be achieved.

2. Return a value to indicate how to change the event flags.

3. Provide a function that changes the event flags while it has proper access to the task. Notice: this
does not necessarily mean that the task must be locked via a mutex, it just means that no other
thread reads or writes the event flags when the function changes it.

Solution 2 would extend the return values given before by more flags (the required values can be easily
encoded as bits in an integer value). These flags could be returned as “SET” and “CLEAR”.

flag meaning
RD IS-READABLE
WR IS-READABLE
SL TIMEOUT
LI NEW-CONNECTION

3.20.5.1.3 Maximize Concurrency To maximize concurrency, the system must be able to handle
multiple requests over one file descriptor concurrently. This is required for the QMGR if it serves requests
from SMTPS, which is multi-threaded and will use only one connection per process, over which it will
multiplex all requests to (and answers from) the QMGR. Hence there must a (library supplied) function
that can be called from an application to put a task back into the wait queue after it read a request
(usually in form of an RCB, see Section 3.16.11.1.1). Then the thread can continue processing the request
while the task manager can wait for an event on the same file descriptor and schedule another thread to
take care of it. This way multiple requests can be processed concurrently.

3.20.5.1.4 Changing Event Types: Problem This raises another problem: usually tasks in a
server wait for incoming requests. Then they process them and send back responses. However, if an
application returns a task as soon as possible to the wait queue, then it can’t change the event types
for the task (to include IS-WRITABLE so the answer is sent back to the client), because it relinquished
control of it. So either the task descriptions must be protected by a mutex (which significantly complicates
locking and error handling), or a different way must be used to change the event mask of a task (see
3.20.5.1.2). One such way is to provide a function that informs the task manager of the change of the
event mask, i.e., send the task manager (over an internal communication mechanism, usually a pipe) the
request to enable a certain event type (e.g., IS-WRITABLE). Since the task manager locks both queues
as soon as an event occurred, it can easily change the task event type without any additional overhead.
Moreover, this solution has the useful side effect that the wait queue is scanned again and the new event
type is added to the list of events to wait for. However, the task might be active, i.e., in neither of the
queues. In that case, we can either request that the user-land program does not change the status flags
(which is probably a good idea anyway), or we actually have to use a mutex per task, or we need to come
up with another solution.

A related problem is “waking” up another task. For example, we may have a task that periodically
performs a function if data is available on which to act. If no data is available, then this task should not
wake up at all, or only in long intervals. Initially the task may wake up in long intervals, look for data,
and go back to sleep for the long interval if no data is available. If however data becomes available while

Sendmail X, May 4, 2005, 11:44 217

the task is sleeping for the long interval, its timeout should be decreased to the short interval. There
might be varying requirements:

1. perform the function immediately if data becomes available. In that case the task that makes the
data available might perform that function itself, unless concurrency is possible.

2. perform the function only in certain (short) intervals if data is available. Group commits are a
perfect example for this (which triggered this discussion here).

This can probably be handled similar to the problem mentioned before, in addition to telling the task
manager that a certain event type should be enabled, it also tells it the new timeout.

3.20.5.1.5 Changing Event Types: Discussion The task context should contain the following
status flags:

1. what kind of events the task is waiting for (event request flags). These flags may be modified by
the application and by the library.

2. what kind of events did occur (event occurred flags). These flags are only modified by the library
and read by the application.

3. internal status/control flags. These flags are only accessed by the library, never by the application.

There doesn’t seem to be a way around using a mutex to protect access to the event request flags (1)
and similar data, e.g., the timeout of a task. If some data can be modified in a task context while it is
not “held” because it’s in one of the queues, then we need to protect it.

Maybe we can split the event request flags:

1. current event request flags, which are only modified by the library.

2. new event request flags, which are modified by the application and the library.

Then we can modify the event request flags of a task when it is “under control”, i.e., when it is in a queue
and the main control loops examines the tasks. That is, a function adds a change request for a task to a
list; the change request includes the new event request flags and the task identifier (as well as other data
that might be necessary, e.g., new sleep time). When the main loop is invoked, it will check the change
request list and apply all changes to tasks that are under its control, i.e., in the wait queue. This should
allow us to avoid per-task mutexes.

Alternatively, we can use mutexes just to protect the “new request” flags (see list above: item 2). That
way the protected data is fairly small and there should almost never be any contention. Moreover, we
can avoid having a list (with all its problems: allocation, searching for data, etc).

3.20.5.1.6 Idle Task It might be useful to be able to specify a task that is invoked if the system is
idle (the so-called “idle task”). For example, if the system doesn’t do anything (all threads idle), invoke
the idle task. That task may take some options like:

• how long must the system be idle before this is invoked?

• what’s the minimum time between invocations?

218 Sendmail X, May 4, 2005, 11:44

Question: how to ”signal” the idle task when the system is busy again? It might be useful to give this
task a low priority in case other tasks are started while it is running such that the scheduler can act
accordingly. Notice that some pthread implementation do not care much about priorities, some even
implement cooperative mult-threading.

3.20.5.1.7 Misc Question: what about callback functions for signals?

Chapter 4

Sendmail X: Implementation

This chapter describes some parts of the current sendmail X implementation. Obviously the implementa-
tion may change at any time, this is not part of the sendmail X specification. Only the external interfaces,
i.e., those described in previous chapters, specify the sendmail X behavior and configuration. The usual
disclaimer “may be subject to changes” applies, i.e., nobody should rely on the descriptions given here,
they are for people who actually want to understand (and modify or maintain) the source code. Some
of the descriptions might not be up to date (usually the source code is implemented/changed first and
updating the documentation may lag a bit).

4.1 Introduction to the Sendmail X Source Code

There are some parts of the sendmail X source code which should be explained before the individual
modules and the libraries. Those are conventions that are common to at least two modules and which
will be used in the following sections.

4.1.1 Identifiers

In Section 3.1.1.2 some remarks about identifiers have been made. In this section the structure of session
and transaction identifiers are explained. These identifiers for the SMTP server consist (currently) of
a leading ‘S’, a 64 bit counter, and an 8 bit process index, i.e., the format is: "S%016qX%02X". Those
identifiers are of course used in other modules too, especially the QMGR. For simplicity the identifiers
for the delivery agents follow a similar scheme: a leading ‘C’, an 8 bit process index, a running counter
(32 bit) and a thread index (32 bit). Notice that only the SMTPS identifiers are supposed to be unique
over a very long time period (it takes a while before a 64 bit counter wraps around). The SMTPC (DA)
identifiers are unique for a shorter time (see Section 3.1.1.2 about the requirements) and they allow easy
identification of delivery threads in SMTPC. The type for this identifier is sessta id T.

To uniquely identify recipients they are enumerated within a transaction, so their format is "%19s-%04X"
where the first 19 characters is the SMTPS transaction id and the last four characters are the recipient
index (this limits the number of recipients per transaction to 65535 which seems to be enough1). The
type for this identifier is rcpt id T.

1Famous last words? Probably need to increase this to 32 bits.

219

220 Sendmail X, May 4, 2005, 11:44

In some cases it is useful to have only one identifier in a structure and some field that denotes which
identifier type is actually used, i.e., a superset of sessta id T and rcpt id T. This type is smtp id T.

Notice: under certain circumstances it might be worth to store identifiers as binary data instead of
printable strings. For example, if they are used for large indices that are stored in main memory. For
SMTP server identifiers this shrinks the size from 20 bytes down to 12 (8 byte for the counter, 4 for the
process index assuming that it’s a 32 bit system, i.e., the 8 bit process index will be stored in a 32 bit
word). For the recipient identifiers the length will shrink from 25 bytes (probably stored in 28 bytes)
down to 16 bytes. Whether it is worth to trade memory storage for conversion overhead (and added
complexity) remains to be seen. In the first version of sendmail X this will probably not be implemented.
See also Section 3.13.6.1.1 about size estimates.

4.1.2 Asynchronous Functions

This section talks about the integration of asynchronous functions with the event thread library. Section
3.1.1.1 gives a description of asynchronous functions, stating that a result (callback) function RC is
invoked with the current status and the result of an aysnchronous function as parameters. However, the
implementation of this is not as simple as it might seem. The event thread library (see Section 3.20.5 for
a functional description and Section 4.3.8 for the implementation) uses a task context that is passed to
worker threads which in turn execute the application function (passing it the entire task context).

4.1.2.1 Two Different Problems

Note: there are two different problems described here:

1. a caller may invoke an asynchronous function and the result of that function is the only result that
is required.

2. a caller may invoke an asynchronous function and the result of that function is required by the
caller for further operation.

Case 2 can be turned into case 1 by splitting a function into two (“continuation”), i.e., when the result
is required to continue then the first half of the function saves its state and stops execution, e.g., it goes
back to the wait queue. The second half of the function can then either be executed via the callback, or
it is activated and combines the requested result with the current state to achieve the final result. Note:
this kind of programming is not particularly simple as explained in Section 3.16.4, but it avoids blocking
as much as possible.

4.1.2.2 Two Approaches

There are basically two approaches to this problem:

1. Use a callback function.

2. Add another queue (condqueue) to the event thread context and send a notification via the internal
pipe that a task in that queue can be executed since the condition it is waiting for became true. A
slight variation of this is to use a condition variable and another task that exclusively deals with this
condition variable, but that just adds additional code. Unfortunately there is no (Unix) function
that can wait for an I/O event and a condition variable.

Sendmail X, May 4, 2005, 11:44 221

The advantage of solution 1 is that it requires less context switching (even if it is only a thread context).
If the function RC is a callback that is directly invoked from the function that receives the result from an
external source, then the result values should not be those that are returned to the worker manager (e.g.,
OK, WAITQ, RUNQ, DEL, see 3.20.5.1.1), unless we put an extra handler inbetween that knows about
these return values and can handle them properly by performing the appropriate actions. Therefore this
approach requires careful programming, see below for details.

Solution 2 does not mess around with the worker function and the task (event thread) context without
telling the event thread system about it, hence it does not have the programming restriction mentioned
above; it allows for a more normal programming style. However, there needs to be a way to match the
condition that became true with the task that is waiting for it. Usually this is done via identifiers (see
Section 3.1.1.2), however, the current implementation only allows for a single character to be sent over the
internal notification pipe2. Hence it is complicated to find the right task – waking up one after another to
let them figure out themselves whether “their” condition is met can be expensive. One possible solution
for this is to maintain a queue of results instead of writing the results directly into some structure.
Elements in the result queue contain the necessary identifier to find the right task that is waiting for the
condition/result.

An asynchronous call sequence looks like this:

1. Task C calls create request(request data, context) which appends (request data, context)
to a queue that is specific to the module that handles the request. request data must contain a
unique identifier (token) T, which is used to identify the original task (or at least the data structure
which will store the result) that made a request when a result is returned (see Section 3.1.1.1). Task
C usually returns EVTHR OK to the worker thread, i.e., it is not appended to the wait queue, unless
it is a task that can run concurrently and the context for the request is independent of the (event
thread) task context. For example, QMGR sends requests to SMAR but it puts the task that sends
those requests back into the wait queue since the result is handled by a different task (the one which
communicates with SMAR). There is also no explicit context since the token T identifies the data
structure in which the result will be stored later on (a recipient context in the active queue).

2. A function request handler() takes a request out of its queue and performs the appropriate
actions. Note: if “the appropriate actions” are fast, i.e., non-blocking, then the functionality
of request handler() can be integrated into create request(). However, these asynchronous
functions usually invoke some I/O operations which may block, i.e., even a send (write) operation
may block if the internal (OS) buffers are filled. Hence a write task that is managed by the event
thread system should be used. Moreover, if there is a single communication pipe to a server, then
a single communication task should be used to avoid that requests are garbled (mixed with others)
when being sent to the server (e.g., if two independent threads send request over one pipe the data
might be interleaved and hence unusable).

3. The function result handler() receives a result, possibly transforms the result into a format that
is more suitable for the application, e.g., a package from a DNS server is translated into a C structure
and looks up the identifier T in a table.

The next step depends on which solution has been chosen:

(a) For approach 1 the callback function is invoked with the return value, the token, and the
context (which might be the task structure). The callback function performs some actions
using the result value, e.g., store it in a data structure. Then it may inform some task
about the fact that new data is available for processing, or it may put the requesting task
back into the wait queue. Finally the callback function returns to result handler(). The

2otherwise the write operation could theoretically block

222 Sendmail X, May 4, 2005, 11:44

result handler() function may have placed itself back into the wait queue before invoking
the callback function, and then simply returns to the worker manager.
If the task C is invoked via the callback from result handler() then we either have to make
C aware of this (implicitly by “knowing” which parts of C are invoked by callbacks or explicitly
by passing this information somehow, e.g., encoded in the task structure). We can either
require that a callback has different set of return values, i.e., only EVTHR OK, or we need an
“inbetween” function that can interpret the result values for a manager thread and manipulate
the task context accordingly. The latter seems like the most generic and clean solution. Notice,
however, that we have to take care of the usual problem with accessing the task while it is
outside of our control, i.e., if it has been returned to the event thread system earlier on, the
well-known problems arise (see Section 3.20.5.1.5, additionally the task must know whether it
placed itself earlier on into the wait queue to avoid doing it again).

(b) For approach 2 the return value and the task structure (context) are appended to a queue,
and a signal is somehow sent (e.g., condition variable or write on internal pipe), then the task
waits for the next request, i.e., it returns to the worker manager.

4.1.2.3 Asynchronous Functions: Callback Synchronization

In the previous section solution 3a for approach 1 states that the callback function may store the result
in a data structure. If the caller of the asynchronous function waits for the result, then the access to
the structure must be synchronized and the caller must be informed that the data is available (valid).
Note: this is not a good solution to the problem of asynchronous functions (because the caller blocks
while waiting without giving the event threads library a chance to switch to another thread; if too many
functions are doing this the system may even deadlock), but just a simple approach until a better solution
is found.

The simple algorithm uses a mutex (to protect access to the shared data structure and the status variable),
a condition variable (to signal completion), and a status variable which has three states:

1. initial state;

2. the caller is waiting for the result;

3. the result has been written.

Note: due to the asynchronous operation, states 2 and 3 do not need to happen in that order. Moreover,
state 2 may not be reached at all because the callee is done before the caller needs the result (this is the
best case because it avoids waiting).

Caller:

status = init; /* initialize system */
invoke callee /* call asynchronous function */
... /* do something */
lock; /* acquire mutex */
if (status == init) { /* is it still the initial value? */
status = wait; /* indicate that caller is waiting */
while (status == wait) /* wait until status changes */
cond_wait /* wait for signal from callee, this also unlocks the mutex */

}
}
unlock;

Sendmail X, May 4, 2005, 11:44 223

Callee:

... /* compute result */
lock; /* acquire mutex */
v = result; /* set result */
notify = (status == wait); /* is caller waiting? */
status = sent; /* result is available */
if (notify)
cond_signal /* notify caller if it is waiting */

unlock; /* done */

This can be extended if there are multiple function calls and hence multiple results to wait for. It would
be ugly to use an individual status variable for each function, hence a status variable and a counter are
used. If the counter is zero, then all results are available. The status variable simply indicates whether
the caller is waiting for a result and hence the callee should use the condition variable to signal that the
result is valid. Since there can be multiple callees, only the one for which the counter is zero and the
status variable is wait must signal completion.

Caller:

status = init; /* initialize system */
counter = 0;
...
lock
++counter;
invoke callee /* call asynchronous function */
unlock /* (maybe multiple times) */
... /* do something */
lock /* acquire mutex */
if (counter > 0) { /* are there outstanding results? */
status = wait; /* indicate that caller is waiting */
while (status == wait && counter > 0) /* wait for results */
cond_wait /* wait for signal from callee */

}
unlock /* done */

Callee:

... /* compute result */
lock /* acquire mutex */
--counter;
v = result; /* set result */
/* is caller waiting and this is the last result? */
if (status == wait && counter == 0) {
status = sent; /* results are available */
cond_signal /* notify caller */

}
unlock /* done */

Notes:

224 Sendmail X, May 4, 2005, 11:44

• As usual a while loop is used around cond wait to deal with spurious wakeups.

• It would be sufficient to use (counter > 0) as condition in the while loop of the caller.

• This algorithm allows the caller only to continue if all results are available. It can be useful to use
a result value as soon as it is available. Question: how to implement this?

If the result value cannot have all possible values in its range, then two values can be designated as
v-init and v-wait while all others can be considered as v-sent. This removes the need for a status
variable because the result variable v itself is used for that purpose:

Caller:

v = v_init; /* initialize system */
invoke callee /* call asynchronous function */
... /* do something */
lock /* acquire mutex */
if (v == v_init) { /* is it still the initial value? */
v = v_wait; /* indicate that caller is waiting */
while (v == v_wait) /* wait until status changes */
cond_wait /* wait for signal from callee */

}
}
unlock

Callee:

... /* compute result */
lock; /* acquire mutex */
notify = (v == v_wait); /* is caller waiting? */
v = result; /* set result */
if (notify)
cond_signal /* notify caller if it is waiting */

unlock /* done */

4.1.2.4 Asynchronous Functions: Result Queue

Solution 2 described in Section 4.1.2.2 needs some form of synchronization too: as described in the
previous Section 4.1.2.3 the callee may may return a result before or after the caller wants to access it.

Using the first algorithm from the previous section with a slight modification like this:

Caller:

status = init; /* initialize system */
invoke callee /* call asynchronous function */
... /* do something */
lock; /* acquire mutex */
waiting = (status == init); /* is it still the initial value? */
if (waiting)
status = wait; /* indicate that caller is waiting */

Sendmail X, May 4, 2005, 11:44 225

unlock;
if (waiting)
put task into condqueue

Callee:

... /* compute result */
lock; /* acquire mutex */
v = result; /* set result */
notify = (status == wait); /* is caller waiting? */
status = sent; /* result is available */
if (notify) /* if caller is waiting: */
cond_signal /* notify evthr system about condition */

unlock; /* done */

causes a race condition: after unlocking the mutex in the caller but before putting the task into condqueue
the callee may signal the event thread library that condition is fulfilled. To avoid this race condition, a
condition variable and a mutex must be combined as it is done by pthread cond wait(pthread cond t
*cond, pthread mutex t *mutex):

The pthread cond wait(3) function atomically blocks the current thread waiting on the
condition variable specified by cond, and unblocks the mutex specified by mutex.

In the modified version the caller just instructs the event thread library to put the task into the condqueue:

status = init; /* initialize system */
invoke callee /* call asynchronous function */
... /* do something */
lock; /* acquire mutex */
waiting = (status == init); /* is it still the initial value? */
if (waiting) {
status = wait; /* indicate that caller is waiting */
return to event thread library
with return code that requests to
put task into condqueue

}

and the library itself unlocks the mutex afterwards. A condition variable for event threads hence consists
of a mutex and an identifier (see Section 3.1.1.2) to match caller and callee. Such a condition variable
belongs to a task (just like a file descriptor on which a task might be waiting).

4.1.3 Transaction Based Processing

To deal with various kinds of errors, it is necessary to write functions such that they are “reversible”,
i.e., they either perform a transaction or they don’t change the state (in an inconsistent manner). Un-
fortunately, it is fairly complicated to write all functions in such a way. For example, if multiple changes
must be made each of which can fail, then either the previous state must be preserved such that it can
be restored when something goes wrong, or the changes must be undone individually. For this to work
properly, it is essential that the “undo” operation itself can not fail. Hence an “undo” operation must not

226 Sendmail X, May 4, 2005, 11:44

rely on resources that might become unavailable during processing; for example, if it requires memory,
then that memory must be allocated before the whole operation is started, or at least while the invidual
changes are made, such that the “undo” operation does not need to allocate memory. This might not be
achievable in some cases, however. For example, there are operations in sendmail X that require updates
to two persistent databases, i.e., DEFEDB and IBDB. Both of these require disk space which cannot
be pre-allocated nor can it be guaranteed that two independent disk write operations will succeed. If
the first one fails, then we don’t need to perform the second one. However, if the first one succeeds
and the second one fails, then there is no guarantee that the first operation can be undone. Hence the
operations must be performed in such a manner that even in the worst case mail will not be lost but at
most delivered more than once.

Transaction based processing is also fairly complicated in case of asynchronous operations. If a function
has to perform changes to a local state and creates a list of change requests which will be performed
later on by some asynchronously running thread, then that list of change requests should offer a callback
functionality which can be invoked with the status of the operation such that it can either perform the
local changes (if that has not been done yet) or undo the local changes (if they have been performed
earlier). An additional problem is that other functions may have performed changes inbetween. Hence
it is not possible to save the old state and restore it in case of an error because that would erase other
(valid) changes. Instead “relative” changes must be performed, e.g., in/decreasing a counter.

4.1.4 Secure Programming

As mentioned in Section 2.14, item 8, C has some inherent security problems because it does not provide
boundary checks on buffers, arrays, or strings. Those checks must be implemented by the program itself.
Here are some (obvious) hints when writing code for sendmail X (or other secure programs):

• Functions that do not check the boundaries of output data must not be used, e.g., gets(3),
strcpy(3), strcat(3), etc.

The sendmail X libraries provide communication buffers and replacements for strings, see 3.16.11.1.1,
and 3.16.7, which must be used as much as possible; exception should only be made for external libraries
that do not support these data structures.

4.2 Schedule

Order of implementation:

1. Basic foundation (Milestone 0)

• Learn autoconf, automake, etc use it.

• Error handling routines

• Memory allocation

• I/O ?

• Threading library (libsmi?)

2. SMTP Server Prototype (Milestone 1)

based on state threads

Sendmail X, May 4, 2005, 11:44 227

3. QMGR Prototype (Milestone 2)

• based on POSIX threads and a worker thread library.
• implement communication framework
• implement communication between QMGR and SMTPS

4. SMTP Client Prototype (Milestone 3)

• based on state threads
• implement communication between QMGR and SMTPC

Milestone 3 is complete if a mail can be received by SMTPS, safely stored in a queue by QMGR,
scheduled for delivery by a very simple scheduler in the QMGR, and then delivered by SMTPC.

Milestone 3 has been reached 2002-08-19.

Notice: this is prototype code. There are many unfinished places within the existing code not to
mention all the parts that are completely missing.

5. AR Prototype (Milestone 4) (called SMAR: SendMail Address Resolver)

• based on event thread library.
• implement communication between QMGR and AR, including proper handling of (unresolved)

addresses.
• implement a very simple routing feature that maps domain parts to IPv4 addresses.

Milestone 4 has been reached 2002-09-19.

6. Implement deferred queue (done, uses Berkeley DB 4.1.x).

7. Implement a simple anti-relay system (done, using regular expressions).

8. Routing MTA (with minimal functionality). Milestone 5 has been reached.

9. MCP to control system. Milestone 6 (implemented).

10. implement more data structures in the QMGR, esp. the connection caches, to provide better schedul-
ing (done).

11. configuration system (done).

Next steps:

• Basic work:

– logging (some work has been done already).

• hard task: a real scheduler.

As of 2004-01-01 sendmail X is running as MTA on the machine of the author. sendmail 8 is only used
for mail submission.

4.3 Libraries

This section describes the implementation of some libraries which are used by various sendmail X modules.

228 Sendmail X, May 4, 2005, 11:44

4.3.1 Queues, Lists, etc

Queues, lists, et.al., are taken from OpenBSD <sys/queue.h>.

4.3.2 Hash Tables

Two hash table implementations are available: a conventional one with one key and a version with two
keys. The latter is currently not used, it was intended for the DA database.

4.3.3 Classes

Classes can be used to check whether a key is in a set.

Classes can be implemented via a hash table: sendmail 8 allows up to 256 classes (there is a simple
mapping of class names to single byte values). Each element in a class is stored in a hash table, the RHS
is a bitmap to indicate to which classes it belongs. Checking whether something is in a class is done as
follows: lookup word in hash table: if it exists: is it a member of the class we are looking for (which is
just a bitnset() test)? This kind of implementation uses one hash table for many classes.

Alternative implementations are lists if a class has only a few elements (linear search) or tree.

4.3.4 Trees

Various versions of balanced trees are available which are based on code that has been found on the
internet. See include/sm/tree.h, include/sm/avl.h, and include/sm/bsd-tree.h. The latter is
taken from OpenBSD <sys/tree.h>, it can be used to generate functions that operate on splay trees
and red-black trees. That is, there aren’t generic functions that operate on trees, but specific functions
are generated that operate on one type. Of course it is possible to generate a generic version where a
tree node contains the usual data, i.e., a key and a pointer to the value.

4.3.5 RSC

A restricted size cache is implemented using a hash table (for access) and a linked list which is kept in
most-recently used order (MRU).

Note: if we don’t need to dynamically delete and add entries from the RSC and we don’t need the MRU
feature, then we can probably use a (binary) hash table which keeps tracks of the number of entries in it.

The structure definitions given below are hidden from the application.

typedef struct rsc_S rsc_T, *rsc_P;

struct rsc_entry_S
{
CIRCLEQ_ENTRY(rsc_entry_S) rsce_link; /* MRU linkage */
const char *rsce_key; /* lookup key */
unsigned int rsce_len; /* key len */
void *rsce_value; /* corresponding value */

};

Sendmail X, May 4, 2005, 11:44 229

struct rsc_S
{
bht_P rsc_table; /* table with key, rsc_entry pairs */
unsigned int rsc_limit; /* max # of entries */
unsigned int rsc_used; /* current # of entries */
rsc_create_F rsc_create; /* constructor */
rsc_delete_F rsc_delete; /* destructor */
CIRCLEQ_HEAD(, rsc_entry_S) rsc_link; /* MRU linkage */
void *rsc_ctx; /* application context */

};

The following functions (and function types) are provided:

typedef void *(*rsc_create_F) (const char *_key, unsigned int _len,
void *_value, void *_ctx);

typedef sm_ret_T (*rsc_delete_F) (void *_value, void *_ctx);
typedef void (rsc_walk_F)(const char *_key, const void *_value, const void *_ctx);

extern rsc_P rsc_create(sm_rpool_P _rpool, unsigned int _limit, unsigned int _htsize,
rsc_create_F _create, rsc_delete_F _delete, void *_ctx);

extern void rsc_free(rsc_P _rsc);
extern void rsc_walk(rsc_P _rsc, rsc_walk_F *_f);
extern sm_ret_T rsc_add(rsc_P _rsc, bool _delok, const char *_key,

unsigned int _len, void *_value, void **_pvalue);
extern const void *rsc_lookup(rsc_P _cache, const char *_key, unsigned int _len);
extern sm_ret_T rsc_rm(rsc_P _rsc, const char *_key, unsigned int _len);
extern int rsc_usage(rsc_P _rsc);
extern void rsc_stats(rsc_P _rsc, char *_out, unsigned int _len);

4.3.5.1 Typed RSC

If an RSC stores data of different types, it must be possible to distinguish between them. This is
necessary for functions that “walk” through an RSC and perform operations on the data or just for
generic functions, i.e., create and delete. As such, the RSC could store an additional type and pass it to
the delete and create functions. However, this could also handled by the application itself, i.e., it adds a
unique identifier to the data that it stores in an RSC.

The API of a typed RSC implementation differs as follow:

• struct rsc entry S has an addition element rsce type.

• The function prototypes rsc create F, rsc delete F, and rsc walk F have an additional param-
eter type.

• rsc add also has an additional parameter type.

Note that this causes problems with a unified API as described in Section 3.16.12.

230 Sendmail X, May 4, 2005, 11:44

4.3.6 DBs with Multiple Access Keys

We could use a fixed number of keys and set those that we are not interested in to NULL, or we could use
a variable number of keys and specify a key and an index. How easy is the second solution to implement?
The keys might be implemented as an array with some upper limit that is specified at creation time.

A possible approach to allow for any number of keys is to specify an array of keys (and corresponding
lengths). During initialization the maximum number of keys is defined (and stored in the structure
describing the DB). Access methods pass in a key and length and the index of the key, where zero is the
primary key. When an element is entered, the primary key is used. What about the other keys? They
must be specified too since the appropriate entries in the hash tables must be constructed. This seems
to become ugly. Let’s try a simpler approach first (one, two, three keys).

4.3.7 DBs with Non-unique Access Keys

This might be implemented by having a (second) link in the entries which points to the next element
with the same key. Check the hash table implementation.

4.3.8 Event Thread Library

The event thread library provides the basic framework for a worker based thread pool that is driven by
I/O events and by wakeup times for tasks. See Section 3.20.5 for a functional description.

This library uses a general context that describes one event thread system and a per task context. It
uses two queues: a run queue of tasks that can be executed, and a wait queue of tasks that wait for some
event. Each task is in exactly one of the queues at each time.

The event thread context looks like this (2004-07-27):

struct sm_evthr_ctx_S
{

pthread_cond_t evthrc_cv;
pthread_mutex_t evthrc_waitqmut;
pthread_mutex_t evthrc_runqmut;

int evthrc_max; /* max. number of threads */
int evthrc_min; /* min. number of threads */
int evthrc_cur; /* current number of threads */
int evthrc_idl; /* idle threads */
int evthrc_stop; /* stop threads */
int evthrc_maxfd; /* maximum number of FDs */
timeval_T evthrc_time; /* current time */
sm_evthr_task_P *evthrc_fd2t; /* array to map FDs to tasks */

/* pipe between control thread and worker/signal threads */
int evthrc_pipe[2];

CIRCLEQ_HEAD(, sm_evthr_task_S) evthrc_waitq;
CIRCLEQ_HEAD(, sm_evthr_task_S) evthrc_runq;

};

Sendmail X, May 4, 2005, 11:44 231

The system maintains some number of worker threads between the specified minimum and maximum.
Idle threads vanish after some timeout until the minimum number is reached.

An application function has this prototype:

typedef sm_ret_T (evthr_task_F)(sm_evthr_task_P);

That is, the function receives the per-task context, whose structure is listed next, as a parameter. Even
though this is a violation of the abstraction principle, it allows for some functionality which would be
awkward to achieve otherwise. For example, a user application can directly manipulate the next wakeup
time. We could hide this behind a void pointer and provide some functions to manipulate the task context
if we want to hide the implementation.

struct sm_evthr_task_S
{

CIRCLEQ_ENTRY(sm_evthr_task_S) evthrt_next;
/* protects evthrt_rqevf and evthrt_sleep */
pthread_mutex_t evthrt_mutex;
int evthrt_rqevf; /* requested event flags; see below */
int evthrt_evocc; /* events occurred; see below */
int evthrt_state; /* current state; see below */
int evthrt_fd; /* fd to watch */
timeval_T evthrt_sleep; /* when to wake up */
evthr_task_F *evthrt_fct; /* function to execute */
void *evthrt_actx; /* application context */
sm_evthr_ctx_P evthrt_ctx; /* evthr context */
sm_evthr_nc_P evthrt_nc; /* network connection */

};

The first element describes the linked list, i.e., either the wait queue or the run queue. The second element
(requested event flags) lists the events the task is waiting for:

flag meaning
EVT EV RD task is waiting for fd to become ready for read
EVT EV WR task is waiting for fd to become ready for write
EVT EV LI task is waiting for fd to become ready for accept
EVT EV SL task is waiting for timeout

The third element (events occurred) lists the events that activated the task:

flag meaning
EVT EV RD Y task is ready for read
EVT EV WR Y task is ready for write
EVT EV LI Y task received a new connection
EVT EV SL Y task has been woken up (after timeout)

The fourth element (status) consists of some internal state flags, e.g., in which queue the task is and
what it wants to do next.

The event thread library provides these functions:

extern sm_ret_T evthr_init(sm_evthr_ctx_P *_pctx, int _minthr, int _maxthr, int _maxfd);

232 Sendmail X, May 4, 2005, 11:44

extern sm_ret_T evthr_task_new(sm_evthr_ctx_P _ctx,
sm_evthr_task_P *_task,
int _ev,
int _fd,
timeval_T *_sleept,
evthr_task_F *_fct,
void *_taskctx);

extern sm_ret_T evthr_loop(sm_evthr_ctx_P _ctx);
extern sm_ret_T evthr_waitq_app(sm_evthr_task_P _task);
extern sm_ret_T evthr_en_wr(sm_evthr_task_P _task);
extern sm_ret_T evthr_time(sm_evthr_ctx_P _ctx, timeval_T *_ct);
extern sm_ret_T evthr_new_sl(sm_evthr_task_P _task, timeval_T _slpt, bool _change);

An application first initializes the library (evthr init()), then it creates at least one task (evthr task new()),
and thereafter calls evthr loop() which in turn monitors the desired events (I/O, timeout) and invokes
the callback functions. Those callback functions return a result which indicates what should happen with
the task:

flag meaning
EVTHR OK do nothing, task has been taken care of
EVTHR WAITQ put in wait queue
EVTHR RUNQ put in run queue
EVTHR SLPQ sleep for a while
EVTHR DEL delete task
EVTHR TERM terminate event thread loop

Section 3.20.5 describes some problems that need to be solved:

1. Put a task back into the wait queue, this can be done via evthr waitq app().

2. Enable the event type EVT EV WR, this can be done via evthr en wr().

3. Change (shorten) the timeout, this can be done via evthr new sl().

Question: what about callback functions for signals? Currently the usual signals terminate the system.

4.3.9 RCB Communication

sendmail X uses RCBs for communication between the various modules (see Section 3.16.11.1.1). This
section describes some functions that simplify handling of RCB based communication for modules which
use the event thread library (see Section 4.3.8).

This library uses the following structure:

struct rcbcom_ctx_S
{
sm_evthr_task_P rcbcom_tsk; /* event thread task */
sm_rcb_P rcbcom_rdrcb; /* RCB for communication (rd) */
SIMPLEQ_HEAD(, sm_rcbe_S) rcbcom_wrrcbl; /* RCB list (wr) */
pthread_mutex_t rcbcom_wrmutex;

};

Sendmail X, May 4, 2005, 11:44 233

The first entry is a pointer to the task that is responsible for the communication. The second entry is
the RCB in which data is received. The third is a list of RCBs for data that must be send out, this list
is proteced by the mutex that is the last element of the structure.

The following functions are provided by the library:

sm ret T sm rcbcom open(rcbcom ctx P rcbcom ctx): create a RCB communication context.

sm ret T sm rcbcom close(rcbcom ctx P rcbcom ctx): close a RCB communication context.

sm ret T sm rcbe new enc(sm rcbe P *prcbe, int minsz): create an entry for the write RCB list and
open it for encoding.

sm rcbcom prerep(rcbcom ctx P rcbcom ctx, sm evthr task P tsk, sm rcbe P *prcbe): prepare a
reply to a module: close the read RCB after decoding, open it for encoding, create a new RCB for writing
(using sm rcbe new enc()), and put the task back into the wait queue (unless tsk is NULL). Notice: after
calling this function (with tsk not NULL), the task is not under control of the caller anymore, hence all
manipulation of its state must be done via the functions provided by the event thread library.

sm rcbcom endrep(rcbcom ctx P rcbcom ctx, sm evthr task P tsk, bool notified, sm rcbe P rcbe):
close the write RCB, append it to the RCB list in the context, and if notified is not set inform the task
about the new write request (using evthr en wr()).

sm rcbcom2mod(sm evthr task P tsk, rcbcom ctx P rcbcom ctx): send the first element of the RCB
write list to filedescriptor specified in the task. This function should be called when the event threads
library invoke the callback for the task and denotes that the file descriptor is ready for writing, i.e., it
will be called from an event thread task that checks for I/O activity on that file descriptor. Since the
function does not conform to the function specification for a task, it is called by a wrapper that extracts
the RCB communication context from the task (probably indirectly). The function will only send the first
element of the list; if the list is empty afterwards, it will disable the write request for this task, otherwise
the event thread library will invoke the callback again when the filedescriptor is ready for writing. This
offers a chance for an optimization: check whether another RCB can be written; question: is there a call
that can determine the free buffer size for the file descriptor such that the next write operation does not
block?

4.3.10 DNS

An asynchronous DNS resolver has been implemented (libdns/) according to the specification of Section
3.16.13.

4.3.10.1 DNS Data Structures

A DNS request has the following structure:

struct dns_req_S
{

sm_cstr_P dnsreq_query; /* the query itself */
time_T dnsreq_start; /* request start time */

/* unsigned int dnsreq_tries; * retries */
dns_type_T dnsreq_type; /* query type */
unsigned short dnsreq_flags; /* currently: is in list? */
sm_str_P dnsreq_key; /* key for hash table: query + type */

234 Sendmail X, May 4, 2005, 11:44

dns_callback_F *dnsreq_fct; /* callback into application */
void *dnsreq_ctx; /* context for application callback */
TAILQ_ENTRY(dns_req_S) dnsreq_link; /* next entry */

};

A DNS result consists of a list of entries with the following elements:

typedef union
{

ipv4_T dnsresu_a;
sm_cstr_P dnsresu_name; /* name from DNS */

} dns_resu_T;

struct dns_res_S
{

sm_cstr_P dnsres_query; /* original query */
sm_ret_T dnsres_ret; /* error code */
dns_type_T dnsres_qtype; /* original query type */
unsigned int dnsres_entries; /* number of entries */
unsigned int dnsres_maxentries; /* max. number of entries */
dns_resl_T dnsres_hd; /* head of list of mx entries */

};

struct dns_rese_S
{

dns_type_T dnsrese_type; /* result type */
unsigned int dnsrese_ttl; /* TTL from DNS */
unsigned short dnsrese_pref; /* preference from DNS */
unsigned short dnsrese_weight; /* for internal randomization */
sm_cstr_P dnsrese_name; /* RR name */
TAILQ_ENTRY(dns_rese_S) dnsrese_link; /* next entry */
dns_resu_T dnsrese_val;

};

A DNS manager context contains the following elements:

struct dns_mgr_ctx_S
{

unsigned int dnsmgr_flags;
dns_rql_T dnsmgr_req_hd; /* list of requests */
dns_req_P dnsmgr_req_cur; /* current request */

/* hash table to store requests */
bht_P dnsmgr_req_ht;

#if SM_USE_PTHREADS
pthread_mutex_t dnsmgr_mutex; /* for the entire context? */
sm_evthr_task_P dnsmgr_tsk; /* XXX Just one? */
sm_evthr_task_P dnsmgr_cleanup;

#endif /* SM_USE_PTHREADS */
};

Sendmail X, May 4, 2005, 11:44 235

and a DNS task looks like this:

struct dns_tsk_S
{

/* XXX int or statethreads socket */
int dnstsk_fd; /* socket */
dns_mgr_ctx_P dnstsk_mgr; /* DNS manager */
uint dnstsk_flags; /* operating flags */
uint dnstsk_timeouts; /* queries that timed out */
sockaddr_in_T dnstsk_sin; /* socket description */
sm_str_P dnstsk_rd; /* read buffer */
sm_str_P dnstsk_wr; /* write buffer */

};

4.3.10.2 DNS Functions

The DNS library offers functions to create and delete a DNS manager context:

sm_ret_T dns_mgr_ctx_new(uint flags, dns_mgr_ctx_P *pdns_mgr_ctx);
sm_ret_T dns_mgr_ctx_del(dns_mgr_ctx_P dns_mgr_ctx);

and similar functions for DNS tasks:

sm_ret_T dns_tsk_new(dns_mgr_ctx_P dns_mgr_ctx, uint flags, ipv4_T ipv4,
dns_tsk_P *pdns_tsk);

sm_ret_T dns_tsk_del(dns_tsk_P dns_tsk);
sm_ret_T dns_tsk_start(dns_mgr_ctx_P dns_mgr_ctx, dns_tsk_P dns_tsk,

sm_evthr_ctx_P evthr_ctx)

An application can make a DNS request using the following function:

sm_ret_T dns_req_add(dns_mgr_ctx_P dns_mgr_ctx, sm_cstr_P query,
dns_type_T type, dns_callback_F *fct, void *ctx);

Internal functions of the library are:

sm_ret_T dns_comm_tsk(sm_evthr_task_P tsk);
sm_ret_T dns_tsk_cleanup(sm_evthr_task_P tsk);
sm_ret_T dns_tsk_rd(sm_evthr_task_P tsk)
sm_ret_T dns_tsk_wr(sm_evthr_task_P tsk)
void dns_req_del(void *value, void *ctx);
sm_ret_T dns_receive(dns_tsk_P dns_tsk);
sm_ret_T dns_send(dns_tsk_P dns_tsk);
sm_ret_T dns_decode(sm_str_P ans, uchar *query, int qlen, dns_type_T *ptype,

dns_res_P dns_res);

dns comm tsk() is a function that is called whenever I/O activity is possible, it invokes the read and
write functions dns tsk rd() and dns tsk wr(); respectively. dns tsk cleanup() is cleanup task that
deals with requests which didn’t receive an answer within a certain amount of time.

236 Sendmail X, May 4, 2005, 11:44

4.3.10.2.1 Initializing and Starting the DNS Resolver The following steps are necessary for
initializing and starting the DNS resolver (when using the event threads system):

/* Initialize DNS resolver */
ret = dns_rslv_new(random);

/* Create DNS manager context */
ret = dns_mgr_ctx_new(0, &dns_mgr_ctx);

/* Create one DNS resolver task */
ret = dns_tsk_new(dns_mgr_ctx, 0, ipv4, &dns_tsk);

/* Start DNS tasks (resolver and cleanup) */
ret = dns_tsk_start(dns_mgr_ctx, dns_tsk, evthr_ctx);

4.3.10.2.2 Making a DNS Query dns req add() creates a DNS request and adds it to the list
maintained in the DNS manager context (dnsmgr req hd), unless such a request is already queued, which
is checked via the hash table dnsmgr req ht, to which the request is always added. The key for the hash
table is the DNS query string and the DNS query type concatenated (if the query string has a trailing
dot it will be removed). Whenever a DNS request is added to the list the write event is triggered for
dns tsk wr(), which will take the current request (pointed to by dnsmgr req cur), form a DNS query
and send it to a DNS server using dns send(). Notice: the request will not be removed from the list,
this is done by either the cleanup task or the read function. To indicate whether a request is in the list
or merely in the hash table, the field dnsreq flags is used.

The hash table is used by the function dns tsk rd() which receives replies from a DNS server to identify
all requests for a DNS query (it uses dns tsk rd() and dns decode()). The function removes all those
requests from the hash table and the DNS manager list, and creates a local list out of them. Then it
walks through that list and invokes the callback functions specified in the requests with DNS result and
the application specific context.

The cleanup task dns tsk cleanup() uses the DNS manager list of requests (from the first element up to
the current one), and checks whether they have timed out (based on the time the request has been made
dnsreq start). If this is the case then the request is removed from the list and appended to a local list.
Moreover, all requests in the hash table for the same query are moved into the local list too – this needs
improvement. As soon as a request is found that is not timed out (or the current element is reached),
the search stops (this currently doesn’t allow for individual timeouts). Thereafter, the callbacks for the
requests in the local lists are invoked with a DNS result that contains an error code (timeout).

4.3.11 Logging

There is currently a simple implementation for logging in libmta/log.c. It closely follows the ISC logging
module API mentioned in Section 3.16.16.1.

4.3.11.1 Logfile Rotation

The current implementation has a slight problem with logfile rotation. The programs use stdout/stderr
for logging; they do not open a named logfile themselves, this is done by the MCP for them. Hence

Sendmail X, May 4, 2005, 11:44 237

there is no way for them to reopen a logfile, instead the sm log reopen() function rewinds the file using
ftruncate(2) and fseek(3).

Alternatively the name of a logfile can be passed to each module such that it can open the file itself
and hence the filename is available for the reopen function. The filename could be stored in the logging
context and hence the reopen function could act accordingly, i.e., use sm io open() if a filename exists
and otherwise the method described above.

4.4 SMTP Server Daemon

4.4.1 First Prototype

The first prototype of SMTPS is based on state threads (see Section 3.20.3.1).

This prototype uses a set of threads which is limited by an upper and lower number. If threads are idle
for some time and there are more than a specified number of idle threads available, they terminate. If
not enough threads are available, new ones are created up to a specified maximum.

4.4.1.1 Misc

Remark (placed here so it doesn’t get lost): there is a restricted number (< 60000) of possible open
connections to one port. Could that limit the throughput we are trying to achieve or is such a high
number of connections unfeasible?

4.4.2 Communication between SMTPS and QMGR

We do not want a separate connection between QMGR and SMTPS for each thread in SMTPS, hence
we need to associate the data from QMGR with the right thread in SMTPS. One approach is to have
a receiver thread in SMTPS which communicates with the QMGR. It receives all data from the QMGR
and identifies the context (session/transaction) to which the data belongs. This needs some list of all
contexts, e.g., an AVL tree, or, if the number of entries is small enough, a linear list. Question: is there
some better method, i.e., instead of searching some structure have direct access to the right thread (see
also Section 3.1.1.2)? There might be some optimization possible since each SMTPS has only a limited
number of threads, so we could have an array of that size and encode an index into that array into the
RCB, e.g., use another ID type that is passed around (like a context pointer). It then adds that data
to the context and notifies the thread There is one thread to read from the communication channel, but
multiple tasks can actually write to it; writing is sequentialized by a mutex. In a conventional thread
model, we would just select on I/O activities for that channel and notifications when a new RCB is added
to the list to send to the QMGR (like it is done in the QMGR), however, in state threads I/O activity
is controlled by the internal scheduler. Since there are multiple threads, it might be necessary to control
how far ahead the writers can be of the readers (to avoid starvation and unfairness). However, this should
be self-adjusting since threads are waiting for replies for requests they send before they send out new ones
(by default, in some cases a few requests may be outstanding from one thread). If too many threads send
data, then the capacity of the communication channel and the way requests are handled by the QMGR
should avoid starvation and guarantee fairness.

238 Sendmail X, May 4, 2005, 11:44

4.4.2.1 Implementation of Communication between SMTPS and QMGR

As explained above there is one thread that takes care of the communication between the module and
the QMGR. This thread uses the following structure as context:

struct s2q_ctx_S
{

int s2q_status; /* status */
st_netfd_t s2q_fd; /* fd for communication */
int s2q_smtps_id; /* smtps id */
st_mutex_t s2q_wr_mutex; /* mutex for write */
unsigned int s2q_maxrcbs; /* max. # of outstanding requests */
unsigned int s2q_currcbs; /* current # of outstanding requests */
sessta_id_P *s2q_sids; /* array of session ids */
smtps_sess_P *s2q_sess; /* array of session ctx */

};

For initialization and termination of the communication task the following two functions are provided:

sm_ret_T sm_s2q_init(s2q_ctx_P s2q_ctx, int smtps_id, unsigned int maxrcbs);
sm_ret_T sm_s2q_stop(s2q_ctx_P s2q_ctx);

The initialization function connects to the QMGR and stores the file descriptor for communication in
s2q fd. It allocates two arrays for sessions IDs and session contexts which are used to find the SMTPS
session for an incoming RCB, and it sends the initial “A new SMTPS has been started” to the QMGR.
Finally sm s2q init() starts a thread that executes the function void *sm rcb from srv(void *arg)
which receives the s2q context as parameter. This function receives an RCB from QMGR and notifies
the thread that is associated with the task via a condition variable; the thread can be found using the
s2q sids array.

Data can be sent to the QMGR using one of the functions sm s2q *() for new session ID, close session
ID, new transaction ID, new recipient, close transaction ID, and discard transaction ID.

The function sm w4q2s reply() is used to wait for a reply from QMGR. It waits on a condition variable
(which is stored in the SMTPS session context) which is signalled by sm rcb from qmgr().

4.4.2.2 SMTPS - QMGR Protocol

Initially the SMTP server sends the QMGR its id and the maximum number of threads it is going to
create.

Sendmail X, May 4, 2005, 11:44 239

RT S2Q NID id of new SMTPS
RT S2Q ID id of SMTPS
RT S2Q CID close SMTPS (id)
RT S2Q STAT status
RT S2Q MAXTHRDS max number of threads
RT S2Q NSEID new session id
RT S2Q SEID session id
RT S2Q CSEID close session id
RT S2Q CLTIP4 client IPv4 address
RT S2Q CLTIP6 client IPv6 address
RT S2Q CLTPORT client port
RT S2Q NTAID new transaction id
RT S2Q TAID transaction id
RT S2Q CTAID close transaction id
RT S2Q DTAID discard transaction id
RT S2Q MAIL mail from
RT S2Q RCPT IDX rcpt idx
RT S2Q RCPT rcpt to
RT S2Q CDBID cdb id

The common reply format from QMGR to SMTPS consists of the SMTPS id (which is only transmitted
for paranoia), a session or transaction id, a status code and an optional status text:

RT Q2S ID SMTPS id
RT Q2S SEID/RT Q2S TAID session/transaction id
RT Q2S STAT[D] status (ok, reject, more detailed?)
RT Q2S STATT status text

The function sm rcb from srv() uses the session/transaction id to find the correct thread to which the
rest of the RCB will be given.

RT Q2S ID id of SMTPS
RT Q2S STAT status for session/transaction/...
RT Q2S STATV status value (text follows)
RT Q2S STATT status text
RT Q2S SEID session id
RT Q2S TAID transaction id
RT Q2S RCPT IDX rcpt idx
RT Q2S CDBID cdb id
RT Q2S THRDS slow down
RT Q2S STOP stop reception (use slow = 0?)
RT Q2S DOWN shut down

4.4.2.3 SMTPS - SMAR Protocol

The SMTP server uses the AR as map lookup server to avoid blocking calls in the state-threads appli-
cation. While the anti-spam logic etc is implemented in SMTPS, the map lookups are performed by
SMAR. Hence SMTPS only sends minimal information to SMAR, e.g., the sender or recipient address
and asks for lookups in some maps with certain features, e.g., lookup the full address, the domain part,
the address without details (“+detail”).

240 Sendmail X, May 4, 2005, 11:44

RT S2A TAID transaction id
RT S2A MAIL mail from
RT S2A RCPT IDX rcpt idx
RT S2A RCPT rcpt to (printable address)
RT S2A LTYPE lookup type
RT S2A LFLAGS lookup flags

To simplify the SMTP server code, the reply format for SMAR is basically the same as for QMGR:

RT A2S ID id of SMTPS
RT A2S TAID transaction id
RT A2S STAT[D] status (ok, reject, more detailed?)
RT A2S STATT status message

RT A2S MAIL ST mail status
RT A2S RCPT IDX rcpt index
RT A2S RCPT ST rcpt status

Values for lookup types are:

LT LOCAL ADDR is local address?
LT RCPT OK is address ok as a recipient?
LT MAIL OK is address ok as a sender?

Values for lookup flags are:

LF DOMAIN try domain
LF FULL try full address
LF LOCAL try localpart
LF NODETAIL try without detail

4.5 Mail Delivery Agents

4.5.1 Maintaining Delivery Classes and Agents

As explained elsewhere (2.8.2) it is possible to specify multiple delivery classes and multiple delivery
agents that implement delivery classes. The former are referenced by the address resolver when selecting
a mailer. The latter are selected by the scheduler after it receives a mailer to use.

Every delivery agent has an index and a list of delivery classes it implements. There is also a list of
delivery classes (which are referenced by some id, most likely a numeric index into an array). This list is
maintained by SMAR, each DA, and QMGR (and must obviously be kept in sync if numeric indices are
used instead of names). QMGR keeps for each delivery class a list of delivery agents that implement the
class, which can be used by the scheduler to select a DA that will perform a delivery attempt.

Note: As described in Section 3.8.3.1 item 6, the first version of sendmail X does not need to implement
the full set of this; all delivery agents implement the same delivery classes, hence they can be selected
freely without any restriction.

Sendmail X, May 4, 2005, 11:44 241

4.6 SMTP Client

4.6.1 First Prototype

The first prototype of SMTPC is based on state threads (see Section 3.20.3.1).

It follows a similar thread model as that used for the SMTP server daemon (see Section 4.4).

4.6.1.1 SMTPC - QMGR Protocol

See Section 3.4.5.1 for a description.

As usual, a protocol header is sent first. Moreover, the next entry in each RCB is the identifier of the
SMTPC to which the QMGR wants to talk: RT Q2C ID.

The rest of the RCB is described below for each function.

Notice: for status codes an additional text field might follow, which currently isn’t specified here.

1. qmgr da new(IN da, IN da-descripton, OUT da-handle, OUT status)

2. qmgr da new result(IN da, IN da-handle, OUT status)

3. qmgr da stop(IN da, IN da-handle, OUT status)

4. qmgr da stop result(IN da, IN da-handle, OUT status)

5. qmgr da sess new(IN da, IN session, IN da-session-handle, IN transaction, IN da-trans-handle, OUT
session-status, OUT trans-status, OUT status)

RT Q2C DCID: delivery class id.

• RT Q2C NSEID: open a new session (using this id), or alternatively: RT Q2C ONESEID:
session with one transaction: this sends just the data for a session with a single transaction
(included in this RCB), qmgr da session close() will not be called afterwards.

• RT Q2C SRVIP4: server IPv4 address, or RT Q2C SRVIP6: server IPv6 address; optional:
port number (defaults to 25).

More data to follow, e.g., requirements about the session.

For the transaction data see below (item 7).

6. qmgr da sess new result(IN da, IN da-session-handle, IN da-trans-handle, OUT session-status, OUT
trans-status, OUT status)

RT C2Q SESTAT: session status: either SMTP status code or an error code, e.g., connection
refused etc.

7. qmgr da ta new(IN da, IN da-session-handle, IN transaction, IN da-trans-handle, OUT trans-
status, OUT status)

• RT Q2C NTAID: new transaction id

• RT Q2C MAIL: mail from

• RT Q2C CDBID: cdb id

242 Sendmail X, May 4, 2005, 11:44

• RT Q2C RCPTIDX: rcpt index

• RT Q2C RCPT: rcpt to

The recipient data might be repeated to list multiple recipients Notice: we may run into a size limit
of RCBs here; do we need something like a continuation RCB?.

8. qmgr da ta new result(IN da, IN da-session-handle, IN da-trans-handle, OUT trans-status, OUT
status)

See Section 3.9.2.1 about the status information that is sent from an SMTP client to QMGR.

RT C2Q TASTAT: transaction status: this is the overall status of a transaction. It has two parts:
an error code and an error state, the latter describes in which state of the SMTP dialogue (or
internal state) the error occurred. An optional error message can be sent (RT C2Q STATT). If
recipient statuses are sent then the record type RT C2Q TARSTAT is used instead. A recipient
status consists of three items:

• RT C2Q RCPT IDX: rcpt index: this may be sent several times together

• RT C2Q RCPT ST: rcpt status (numeric error code)

• RT C2Q RCPT STT: text describing rcpt status.

9. qmgr da session close(IN da, IN da-session-handle, OUT status)

RT Q2C CSEID: close session id

10. qmgr da session close result(IN da, IN da-session-handle, OUT status)

This value can be pretty much ignored for all practical purposes, except if we want to see whether
the server behaves properly and still responds.

RT C2Q SESTAT: session status (or do we want to use a different record type? Might be useful to
distinguish to avoid confusion)

4.6.2 SMTP Client Implementation

4.6.2.1 SMTP Client Data Structures

The main SMTPC context structure looks like this:

struct sc_ctx_S
{

unsigned int sc_max_thrds; /* Max number of threads */
unsigned int sc_wait_thrds; /* # of threads waiting to accept */
unsigned int sc_busy_thrds; /* # of threads processing request */
unsigned int sc_rqst_count; /* Total # of processed requests */
uint32_t sc_status; /* SMTPC status */
sm_str_P sc_hostname; /* SMTPC hostname */
sc_t_ctx_P *sc_scts; /* array of sct’s */

};

The last element of that structure is an array of SMTPC thread contexts (0 to sc max thrds−1):

Sendmail X, May 4, 2005, 11:44 243

struct sc_t_ctx_S
{

sc_ctx_P sct_sc_ctx; /* pointer back to sc_ctx */
unsigned int sct_thr_id; /* thread id (debugging) */
unsigned int sct_status;
st_cond_t sct_cond_rd; /* received data from QMGR */
sc_sess_P sct_sess; /* current session */

};

The condition variable denotes when data from the QMGR is received for this particular thread. The
last element is a pointer to the SMTPC session:

struct sc_sess_S
{

sc_t_ctx_P scse_sct_ctx; /* pointer to thread context */
sm_file_T *scse_fp; /* file to use (SMTP) */
sm_str_P scse_rd; /* smtp read buffer */
sm_str_P scse_wr; /* smtp write buffer */
sm_str_P scse_str; /* str for general use */
sm_rpool_P scse_rpool;
unsigned int scse_cap; /* server capabilities */
unsigned int scse_flags;
unsigned int scse_state;
struct in_addr *scse_client; /* XXX use a generic struct! */
sc_ta_P scse_ta; /* current transaction */
sessta_id_T scse_id;
sm_rcb_P scse_rcb; /* rcb for communication with QMGR */
SOCK_IN_T scse_rmt_addr; /* Remote address */
st_netfd_t scse_rmt_fd; /* fd */

};

The SMTPC transaction structure looks as follows:

struct sc_ta_S
{

sc_sess_P scta_sess; /* pointer to session */
sm_rpool_P scta_rpool;
sc_mail_P scta_mail; /* mail from */
sc_rcpts_P scta_rcpts; /* rcpts */
sc_rcpt_P scta_rcpt_p; /* current rcpt for reply */
unsigned int scta_rcpts_rcvd; /* # of recipients replies received */
unsigned int scta_rcpts_tot; /* number of recipients total */
unsigned int scta_rcpts_snt; /* number of recipients sent */
unsigned int scta_rcpts_ok; /* number of recipients ok */
unsigned int scta_rcpts_lmtp; /* #LMTP rcpts still to collect */
unsigned int scta_state;
smtp_status_T scta_status; /* SMTP status code (if applicable) */
sessta_id_T scta_id; /* transaction id */
sm_str_P scta_cdb_id; /* CDB id */

};

244 Sendmail X, May 4, 2005, 11:44

4.6.2.2 SMTP Client Functions

4.6.2.2.1 Main Control In the main() function SMTPC calls several initialization function, one
of which (sc init(sc ctx)) initializes the SMTPC context and allocates the array of SMTPC thread
contexts. Then it starts the minimum number of threads (using start threads(sc ctx)) and the main
thread takes care of signals afterwards. The threads run the function sc hdl requests() which receives
the SMTPC context as parameter. This function looks for a free entry in the SMTPC thread context
array, and allocates a new thread context which it assigns to that entry. It also allocates a new SMTPC
session context. Thereafter it sets its status to SC T FREE and the first thread that is called informs the
QMGR communication thread that SMTPC is ready to process tasks. The main part of the function
processes a loop:

while (WAIT_THREADS(sc_ctx) <= max_wait_threads) { ... }

i.e., the thread stays active as long as the number of waiting threads is below the allowed maximum. This
takes care of too many waiting threads by simply terminating them if the condition is false, in which case
the thread cleans up after itself and terminates. Inside the loop the thread waits on its condition variable:
sc t ctx->sct cond rd. If that wait times out, the current session (if one is open) will be terminated.
If the QMGR actually has a task for this thread, then it first checks whether another thread should be
started:

if (WAIT_THREADS(sc_ctx) < min_wait_threads &&
TOTAL_THREADS(sc_ctx) < MAX_THREADS(sc_ctx))

{ /* start another thread */ }

and then handles the current session: handle session(sc t ctx). This functions handles one SMTP
client session. The state of the session is recorded in sc sess->scse state and can take one of the
following values:

SCSE ST NONE no session active
SCSE ST NEW new session
SCSE ST CONNECTED connection succeeded
SCSE ST GREETED received greeting
SCSE ST OPEN connection open
SCSE ST CLOSED close session

Based on this state the function opens a session if that hadn’t happened yet and performs one transaction
according to the data from the QMGR. Depending on a flag in sc sess->scse flags the session is
optionally closed afterwards.

4.6.2.2.2 Communication Function As usual there is one thread that takes care of the communi-
cation between the module and the QMGR. This thread uses the following structure as context:

struct c2q_ctx_S
{

sc_ctx_P c2q_sc_ctx; /* pointer back to SMTPC context */
unsigned int c2q_status; /* status */
st_netfd_t c2q_fd; /* fd for communication */
unsigned int c2q_sc_id; /* smtpc id */
st_cond_t c2q_cond_rd; /* cond.var for read */

Sendmail X, May 4, 2005, 11:44 245

st_cond_t c2q_cond_wr; /* cond.var for write */
unsigned int c2q_maxses; /* max. # of open sessions */
sc_sess_P *c2q_sess; /* array of session ctx */

};

For initialization and termination the following two functions are provided:

sm_ret_T sm_c2q_init(sc_ctx_P sc_ctx, c2q_ctx_P c2q_ctx, unsigned int sc_idx, unsigned int maxses);
sm_ret_T sm_c2q_stop(c2q_ctx_P c2q_ctx);

The initialization function starts a thread that executes the function void *sc rcb from qmgr(void
*arg) which receives the c2q context as parameter. This function receives an RCB from QMGR and
notifies a thread that is associated with the task or finds a free SMTPC thread if it is a new task. To
maintain the former information one array for session contexts c2q sess is allocated; its size is maxses
which is set to MAX THREADS(sc ctx) by the caller. This allows the communication module to find the
correct session context based on the session (or transaction) identifier sent by the QMGR in its requests
if the request refers to an open session. To find a free SMTPC thread, the array sc scts in the SMTPC
context is searched for a NULL entry.

Status information can be sent back to the QMGR using the function sm ret T sc c2q(sc t ctx P
sc t ctx, uint32 t whichstatus, sm ret T ret, c2q ctx P c2q ctx).

4.6.2.2.3 SMTP Related Functions The SMTP client functionality is fairly restricted right now,
but the system implements full pipelining (in contrast to sendmail 8 which uses MAIL as synchronization
point). As usual, the SMTP client is also able to speak LMTP.

To open and close a SMTP session two functions are provided: sm ret T sc sess open(sc t ctx P
sc t ctx) and sm ret T sc sess close(sc t ctx P sc t ctx). The function sm ret T sc one ta(sc t ctx P
sc t ctx) performs one SMTP transaction. As it can be seen from the prototypes, the only parameter
passed to these function is the SMTPC thread context which contains (directly or indirectly) pointers to
the current SMTPC session and transaction.

As shown in Section 4.6.2.1, the SMTPC session context contains three strings (see 3.16.7) that are used
for the SMTP dialog and related operations.

Since the content database stores the mail in SMTP format, it can be sent out directly without any
interaction. Similar to the SMTP server side this function access the file buffer directly to avoid too
much copying.

4.7 Queue Manager

Just some items to take into consideration for the implementation of the queue manager. These are
written down here so they don’t get lost...

• multi-threaded

• must not block (pthreads ok?)

Problem here: what about disk I/O? For example: calling fsync() for the logfile may cause the
queue manager to block. If the thread implementation doesn’t schedule another thread while one

246 Sendmail X, May 4, 2005, 11:44

is blocked on disk I/O, then the entire process will hang and the queue manager will not respond
to other requests.

If this actually happens (fairly likely on some OSs with user-land pthread implementation), and it
causes a problem (performance), then it might be necessary to create another process that actually
performs disk I/O on behalf of the QMGR.

• must scale (multiple CPUs)

• can we write some generic libraries?

• event driven (requests from SMTPS, feedback from SMTPC)

• event scheduling? which?

– low activity: next queue run

– group commits: answer within N ms

How about a flow diagram? Some architectural overview would be nice.

The QMGR should not have to deal with many connections. SMTPS and SMTPC are multi-threaded
themselves; we may have some SMTPS/SMTPC processes. However, it won’t be so many that we have
a problem with the number of connections to monitor, i.e., poll() should be sufficient.

Which threading model should we choose? Just a few worker threads that will go back to work whenever
they encounter a blocking action? See Section 3.20 for discussion.

Do we need priority queues or can we serve all jobs FIFO?

4.7.1 Queue Manager Implementation

The QMGR is based on the event threads library described in Section 4.3.8.

Currently access to tasks is controlled via the mutexes that control the queues: if a task is taken out of a
queue, it is under the sole control of the thread that did it, no other thread can (should) access the task.
Unless we change this access model, no mutex is necessary for individual tasks.

4.7.2 Locking

The queue manager has several data structures that can be concurrently accessed from different threads.
Hence the access must be protected by mutexes unless there are other means which prevent conflicts.
Some data structures can be rather larger, e.g., the various DBs and caches. Locking them for an extended
time may cause lock contention. Some data structures and operations on them may allow to lock only
a single element, others may require to lock the entire structure. Examples of the latter are adding and
removing elements which in most cases require locking of the entire structure.

In some cases there might be ways around locking contention. For example, to delete items from a DB (or
cache) the item might be just marked “Delete” instead of actually deleting it. This only requires locking
of a single entry, not the entire DB. Those “Delete” entries can be removed in a single sweep later on (or
during normal “walk through” operations), or they can be simply reclaimed for use. Question: what is
more efficient? That is, if the DB is large and a walk through all elements is required to free a few then
that might take too long, and we shouldn’t hold a lock too long. We could gather “Delete” elements in
a queue, then we don’t have to walk through the entire DB. However, then the position of the elements

Sendmail X, May 4, 2005, 11:44 247

must be fixed such that we can directly access and delete them, or at least lookup prior to deletion must
be fast. If the DB internally may rearrange the location of entries then we can’t keep a pointer to them.
Question: will this ever happen? Some DB versions may do this, how about the ones we use? In some
cases, some of the algorithm may require that DB elements don’t move, but in most cases the elements
just contain pointers to the data which isn’t moved and hence can be accessed even if the DB rearranges
its internal data structures.

4.7.2.1 Deadlock Avoidance

If a system locks various items then there is a potential for deadlocks. One way to prevent this is a
locking hierarchy, i.e., items are always locked in the same order. We probably need to define a locking
order. It’s currently unclear how this can be done such that access is still efficient without too much
locking contention. See also Section 4.7.2 for possible ways around locking contention.

4.7.3 Data Structures

The main context for QMGR looks like this: (2004-04-14)

struct qmgr_ctx_S
{

sm_magic_T sm_magic;
pthread_mutex_t qmgr_mutex;
unsigned int qmgr_status; /* see below, QMGR_ST_* */
time_T qmgr_st_time;
/* Resource flags */
uint32_t qmgr_rflags; /* see QMGR_RFL_* */
/* Overall value to indicate resource usage 0:free 100:overloaded */
unsigned int qmgr_total_usage;
/* Status flags */
uint32_t qmgr_sflags; /* see QMGR_SFL_* */
sm_str_P qmgr_hostname;
sm_str_P qmgr_pm_addr; /* <postmaster@hostname> */
/* info about connections? */
fs_ctx_P qmgr_fs_ctx;
cdb_fsctx_P qmgr_cdb_fsctx;
unsigned long qmgr_cdb_kbfree;
edb_fsctx_P qmgr_edb_fsctx;
unsigned long qmgr_edb_kbfree;
unsigned long qmgr_ibdb_kbfree;
/* SMTPS */
id_count_T qmgr_idc; /* last used SMTP id counter */
int qmgr_sslfd; /* listen fd */
int qmgr_ssnfd; /* number of used fds */
uint32_t qmgr_ssused; /* bitmask for used elements */
qss_ctx_P qmgr_ssctx[MAX_SMTPS_FD];
ssocc_ctx_P qmgr_ssocc_ctx;
occ_ctx_P qmgr_occ_ctx;
/* SMTPC */
int qmgr_sclfd; /* listen fd */

248 Sendmail X, May 4, 2005, 11:44

int qmgr_scnfd; /* number of used fds */
uint8_t qmgr_scused; /* bitmask for used elements */
qsc_ctx_P qmgr_scctx[MAX_SMTPC_FD];
sm_evthr_ctx_P qmgr_ev_ctx; /* event thread context */
iqdb_P qmgr_iqdb; /* rsc for incoming edb */
ibdb_ctx_P qmgr_ibdb; /* backup for incoming edb */
sm_evthr_task_P qmgr_icommit; /* task for ibdbc commits */
qss_opta_P qmgr_optas; /* open transactions (commit) */
sm_evthr_task_P qmgr_sched; /* scheduling task */
aq_ctx_P qmgr_aq; /* active envelope db */
edb_ctx_P qmgr_edb; /* deferred envelope db */
edbc_ctx_P qmgr_edbc; /* cache for envelope db */
sm_evthr_task_P qmgr_tsk_cleanup; /* task for cleanup */
qcleanup_ctx_P qmgr_cleanup_ctx;
sm_maps_P qmgr_maps; /* map system context */
/* AR */
sm_evthr_task_P qmgr_ar_tsk; /* address resolver task */
int qmgr_ar_fd; /* communication fd */
qar_ctx_P qmgr_ar_ctx;
sm_rcbh_T qmgr_rcbh; /* head for RCB list */
unsigned int qmgr_rcbn; /* number of entries in RCB list */
/* currently protected by qmgr_mutex */
qmgr_conf_T qmgr_conf;
sm_log_ctx_P qmgr_lctx;
sm_logconfig_P qmgr_lcfg;
uint8_t qmgr_usage[QMGR_RFL_LAST_I + 1];
uint8_t qmgr_lower[QMGR_RFL_LAST_I + 1];
uint8_t qmgr_upper[QMGR_RFL_LAST_I + 1];

};

There are task contexts for QMGR/SMTPS (2004-04-15):

struct qss_ctx_S
{

sm_magic_T sm_magic;
rcbcom_ctx_T qss_com;
qmgr_ctx_P qss_qmgr_ctx; /* pointer back to main ctx */
int qss_id; /* SMTPS id */
uint8_t qss_bit; /* bit for qmgr_ssctx */
qss_status_T qss_status; /* status of SMTPS */
unsigned int qss_max_thrs; /* upper limit for threads */
unsigned int qss_max_cur_thrs; /* current limit for threads */
unsigned int qss_cur_session; /* current # of sessions */

};

and QMGR/SMTPC (2004-04-15):

struct qsc_ctx_S
{

sm_magic_T sm_magic;

Sendmail X, May 4, 2005, 11:44 249

rcbcom_ctx_T qsc_com;
qmgr_ctx_P qsc_qmgr_ctx; /* pointer back to main ctx */
int qsc_id; /* SMTPC id */
uint8_t qsc_bit; /* bit for qmgr_ssctx */
dadb_ctx_P qsc_dadb_ctx; /* pointer to DA DB context */
/* split this in status and flags? */
qsc_status_T qsc_status; /* status of SMTPC */
uint32_t qsc_id_cnt;

};

Both refer to a generic communication structure:

struct qcom_ctx_S
{

qmgr_ctx_P qcom_qmgr_ctx; /* pointer back to main ctx */
sm_evthr_task_P qcom_tsk; /* pointer to evthr task */
sm_rcb_P qcom_rdrcb; /* rcb for rd */
SIMPLEQ_HEAD(, sm_rcbl_S) qcom_wrrcbl; /* rcb list for wr */
pthread_mutex_t qcom_wrmutex; /* protect qss_wrrcb */

};

The QMGR holds also the necessary data for SMTPS sessions (2004-04-15):

struct qss_sess_S
{

sessta_id_T qsses_id;
time_T qsses_st_time;
sm_rpool_P qsess_rpool;
struct in_addr qsess_client; /* XXX use a generic struct! */

};

and transactions (2004-04-15):

struct qss_ta_S
{

sm_rpool_P qssta_rpool;
time_T qssta_st_time;
qss_mail_P qssta_mail; /* mail from */
qss_rcpts_T qssta_rcpts; /* rcpts */
unsigned int qssta_rcpts_tot; /* total number of recipients */
unsigned int qssta_flags;
sessta_id_T qssta_id;
cdb_id_P qssta_cdb_id;
size_t qssta_msg_size; /* KB */
qss_ctx_P qssta_ssctx; /* pointer back to SMTPS ctx */
pthread_mutex_t qssta_mutex;

};

The open transaction context (from SMTPS) stores information about outstanding transactions, i.e.,
those transactions in SMTPS that have ended the data transmission, but have not yet been confirmed

250 Sendmail X, May 4, 2005, 11:44

by the QMGR. This data structure (fixed size queue) is used for group commits to notify the threads in
the SMTPS servers that hold the open transactions.

struct qss_opta_S
{

unsigned int qot_max; /* allocated size */
unsigned int qot_cur; /* currently used (basically last-first) */
unsigned int qot_first; /* first index to read */
unsigned int qot_last; /* last index to read (first to write) */
pthread_mutex_t qot_mutex;
qss_ta_P *qot_tas; /* array of open transactions */

};

Other structures that the QMGR currently uses are

• active queue (AQ, ACTEDB): actdb ctx P qmgr actdb;

• SMTP server open connection cache: ssocc ctx P qmgr ssocc ctx;

• outgoing connection cache: occ ctx P qmgr occ ctx;

• incoming queue (IQDB, in memory): iqdb P qmgr iqdb;

• backup of incoming queue (IBDB, on disk): ibdb P qmgr ibdb;

• main queue: edb ctx P qmgr edb; and a cache edbc ctx P qmgr edbc;

All envelope DBs (INCEDB: ibdb and iqdb, ACTEDB, DEFEDB, EDB) have their own mutexes in their
context structures.

IQDB contains references to qss sess T, qss ta T, and qss rcpts T.

The recipient structure in AQ uses these flags:

Sendmail X, May 4, 2005, 11:44 251

AQR FL IQDB from IQDB
AQR FL DEFEDB from DEFEDB
AQR FL SENT2AR Sent to AR
AQR FL RCVD4AR Received from AR
AQR FL RDY4DLVRY Ready for delivery
AQR FL SCHED Scheduled for delivery, is going to be sent to DA
AQR FL WAIT4UPD Waiting for status update, must not be touched by scheduler
AQR FL TO Too long in AQ
AQR FL TEMP temporary failure
AQR FL PERM permanent failure
AQR FL ARF failure from SMAR
AQR FL DAF failure from DA
AQR FL MEMAR memory allocation for aqr addrs failed, use fallback
AQR FL ARINCOMPL addr resolution incomplete
AQR FL ARF ADD rcpt with SMAR failure added to delivery list
AQR FL TO ADD rcpt with timeout added to delivery list
AQR FL IS BNC this is a bounce
AQR FL IS DBNC double bounce
AQR FL DSN PERM perm error
AQR FL DSN TMT timeout
AQR FL DSN GEN bounce has been generated
AQR FL CNT UPD rcpt counters have been updated, i.e., aq upd ta rcpt cnts() has been called
AQR FL STAT UPD rcpt status (aqr status) has been updated individually

4.7.4 Data Flow

Section 2.4.3.3 explains how transaction and recipient data flows through the various DBs in QMGR.
This section tries to tie the various steps to functions in QMGR (which are explained in Section 4.7.5)

1. An envelope sender address (MAIL) is received by sm qss react() and stored in IQDB by sm q ntaid()
which calls iqdb trans new() for that purpose.

2. An envelope recipient (RCPT) is received by sm qss react() and is stored in the incoming queue
(IQDB) and in IBDB by sm q rcptid() which calls iqdb rcpt add() and ibdb rcpt new() to
perform those actions.

3. When the final dot is received sm qss react() stores the content database information in the
incoming queue (IQDB) and calls sm q ctaid() to store the transaction data (envelope sender and
CDB id) in IBDB using ibdb ta new(). The data is copied into AQ by aq env add iqdb() unless
AQ is full in which case the entry is discarded from IBDB and a temporary error is returned.

4. Before mail reception is acknowledged the entire transaction data is safely committed to the backup
of the incoming queue on disk (IBDB). This is achieved by the function q ibdb commit() which is
invoked by the task qmgr ibdb commit() which can be triggered by sm q schedctaid().

5. Recipient addresses that have been added to AQ from IQDB are sent to the address resolver by
qmgr rcpt2ar(), which is invoked indirectly from aq env add iqdb() (see 3).

6. Results from the address resolver are received by sm qar react() which updates recipients in AQ.
Possible results include (temporary) errors in which case the appropriate actions as explained in
Section 4.7.5.7 are taken.

252 Sendmail X, May 4, 2005, 11:44

7. Delivery transactions consisting of one or more recipients are created by the scheduler qmgr sched()
based on various criteria and sent to delivery agents.

8. Delivery status received from delivery agents is used to update the data in the various queues (see
Section 4.7.5.7 for details).

9. Recipient addresses which are waiting too long for a result from AR or DA must be removed from
AQ, they are put into DEFEDB with a temporary error, unless the overall queue return timeout is
exceeded.

10. Data from DEFEDB is used to feed the active queue; entries are read from it based on their “next
time to try” (or whatever criteria the scheduler wants to apply).

4.7.5 Functions

The main() function of the QMGR is very simple (Notice: in almost all example code error checking etc
has been removed for simplicity).

ret = sm_qmgr_init0(qmgr_ctx); /* basic initialization */
ret = sm_qmgr_rdcf(qmgr_ctx); /* read configuration */
ret = sm_qmgr_init(qmgr_ctx); /* initialization after configuration */
ret = sm_qmgr_start(qmgr_ctx); /* start all components */
ret = sm_qmgr_loop(qmgr_ctx); /* start event threads loop */
ret = sm_qmgr_stop(qmgr_ctx); /* stop all componets */

where all functions do what is obvious from their name.

The main loop sm qmgr loop() simply calls evthr loop(qmgr ctx->qmgr ev ctx).

4.7.5.1 Initialization Functions

sm qmgr init0() performs basic initialization, sm qmgr rdcf() reads the configuration (currently (2004-
02-13) only command line parameters), and sm qmgr init() initializes various QMGR data structures.

sm qmgr start() starts various tasks:

ret = sm_qm_stli(qmgr_ctx);
ret = sm_qm_stcommit(qmgr_ctx, now);
ret = sm_qm_stsched(qmgr_ctx, now);

sm qm stli() starts two (event thread) tasks listening for connections from SMTPS and SMTPC using
the function sm qm smtpsli() and sm qm smtpcli(). sm qm stcommit() starts the periodic commit task
and sm qm stsched() starts the scheduling task.

4.7.5.2 Communication Functions

The two listener tasks sm qm smtpsli() and sm qm smtpcli() do basically the same: wait for a new
connection from the respective service (SMTPS/SMTPC), “register” it in the QMGR context, and start
one task sm qmgr smtpX(sm evthr task P tsk) that takes care of the communication with the SMTPX
process. Notes:

Sendmail X, May 4, 2005, 11:44 253

• the listener tasks start one task per SMTPS/SMTPC process. Hence it is important that there are
not too many processes (currently there is a fixed size list in the QMGR context), because otherwise
there might be too much I/O activity to check (if it’s one process per connection then there would
be a lot of open filedescriptors used by the system, with all the drawbacks mentioned earlier on).

• sm qm smtpcli() may go away since the QMGR is supposed to request delivery agents.

The communication tasks sm qmgr smtpX() dispatch a read function sm smtpX2qmgr() or a write func-
tion sm qmgr2smtpX to deal with the communication request. Those functions use the read RCB
qsX rdrcb to read (sequentially) data from SMTPS/SMTPC and a list of write RCBs qsX wrrcbl to
write data back to those modules. Access to the latter is protected by a mutex and RCBs are appended
to the list by various functions. The communication tasks are activated via read/write availability, where
the write availability is additionally triggered by functions that put something into the list of write RCBs
(otherwise the task would be activated most of the time without actually having anything to do).

The read functions sm smtpX2qmgr() receive an RCB qsX ctx->qsX rdrcb from the module and then
call the function sm qsX react() to decode the RCB and act accordingly. Those functions may return
different value to determine what should happen next with the task. If it is an error, the task terminates
(which might be overkill), other values are: QMGR R WAITQ (translated to EVTHR WAITQ), QMGR R ASYNC
(translated to EVTHR OK), EVTHR DEL which cause the task to terminate; other values are directly returned
to the event threads library. QMGR R ASYNC means that the task has already been returned to the event
thread system (waitq), see Section 3.20.5.1.3.

The write function sm qmgr2mod() locks the mutex qsX wrmutex, then checks whether the list qsX wrrcbl
of RCBs is empty. If it is, then the task returns and turns off the WRITE request. Otherwise it sends
the first element to the respective module using sm rcb snd(), removes that element and if the list is
empty thereafter turns off the WRITE when it returns. Notice: it currently does not go through the
entire list trying to write it all. This is done to prevent the thread from blocking, it is assumed that a
single RCB can be sent. This might be wrong in which case the thread blocks (and hopefully another
runs), which might be prevented by requiring enough space in the communication buffer (can be set via
setsockopt() for sockets).

4.7.5.3 Commit Task

The commit task sm qm stcommit() is responsible for group commits. It checks the list of open transac-
tions qmgr ctx->qmgr optas and if it isn’t empty calls q ibdb commit(qmgr ctx) which in turns commits
the current INCEDB and then notifies all outstanding transactions of this fact. This is done by going
through the list and adding an RCB with the commit information to the list of RCBs qss wrrcbl for
the task qss ta->qssta ssctx that handles the transaction qss ta.

4.7.5.4 Scheduler

The scheduling function sm qm stsched() is supposed to implement the core of the QMGR.

A recipient goes through the following stages:

1. it is created in AQ (either from IQDB or DEFEDB; a flag indicates the source);

2. the address is sent to SMAR (unless already available from DEFEDB);

3. the resolved address is added to the recipient structure (unless already available from DEFEDB);

254 Sendmail X, May 4, 2005, 11:44

4. the item is scheduled for delivery, i.e., an RCB is created;

5. when the RCB is sent to a DA another flag is set;

6. the status is updated when the results are received from the DA;

4.7.5.5 QMGR to SMTPC Protocol

The function sm qs2c task(qsc ctx P qsc ctx, aq ta P aq ta, aq rcpt P aq rcpt, sm rcbe P rcbe,
sessta id P da sess id, sessta id P da ta id) creates one session with one transaction for SMTPC.
The protocol is as follows:

RT Q2C ID SMTPC identifier
RT Q2C DCID delivery class identifier
RT Q2C ONESEID Session id, only one transaction (hack)
RT Q2C SRVIP4 IPv4 address of server (hack)
RT Q2C NTAID New transaction id
RT Q2C MAIL Mail from address
RT Q2C CDBID CDB identifier
RT Q2C RCPT IDX recipient index
RT Q2C RCPT recipient address

Additional recipients can be added via sm qs2c add rcpt(qsc ctx P qsc ctx, aq rcpt P aq rcpt, sm rcbe P
rcbe) which justs adds recipient index and address to the RCB.

If the transaction denotes a bounce message only one recipient can be send and instead of the record tag
RT Q2C NTAID either RT Q2C NTAIDB (bounce) or RT Q2C NTAIDDB (double bounce) is used. Additionally
an entire error text is sent using RT Q2C B MSG (bounce message) as record tag. Currently this does not
include the headers. It should be something like:

Hi! This is the sendmail X MTA. I’m sorry to inform you that a mail
from you could not be delivered. See below for details.

listing recipient address, delivery host, and delivery message for each failed recipient.

4.7.5.6 Load Control Implementation

4.7.5.6.1 Load Control Implementation: Data Structures The main QMGR context contains
three arrays which store the lower and upper thresholds for various resources and the current usage. A
single scalar contains the overall resource usage.

uint8_t qmgr_usage[QMGR_RFL_LAST_I + 1];
uint8_t qmgr_lower[QMGR_RFL_LAST_I + 1];
uint8_t qmgr_upper[QMGR_RFL_LAST_I + 1];

/* Overall value to indicate resource usage 0:free 100:overloaded */
unsigned int qmgr_total_usage;

To store the amount of free disk space, two data structures are used: one to store the amount of available
disk space per partition (see also Section 3.4.10.13.1):

Sendmail X, May 4, 2005, 11:44 255

struct filesys_S {
dev_t fs_dev; /* unique device id */
unsigned long fs_kbfree; /* KB free */
unsigned long fs_blksize; /* block size, in bytes */
time_T fs_lastupdate; /* last time fs_kbfree was updated */
const char *fs_path; /* some path in the FS */

};

and one which contains an array of those individual structures:

struct fs_ctx_S {
#if SM_USE_PTHREADS

pthread_mutex_t fsc_mutex;
#endif /* SM_USE_PTHREADS */

int fsc_cur_entries; /* cur. number of entries in fsc_sys*/
int fsc_max_entries; /* max. number of entries in fsc_sys*/
filesys_P fsc_sys; /* array of filesys_T */

};

4.7.5.6.2 Load Control Implementation: Functions The function qm comp resource(qmgr ctx P
qmgr ctx, thr lock T locktype) computes a value that is a measure for the overall resource usage:
qmgr total usage. Moreover, the function also invokes functions that return the amount of free disk for
a DB that is stored on disk: cdb fs getfree(), edb fs getfree(), and ibdb fs getfree(). Each of
these functions receives a pointer to a variable of type fs ctx T and a pointer to a integer variable which
will contain the amount of available disk space after a succesful return. The functions themselves check
the last update timestamp to avoid invoking system functions too often. Since each DB operations tries
to keep track of the amount of disk space changes, this should return a reasonable estimate of the actual
value.

The function q2s throttle(qss ctx P qss ctx, sm evthr task P tsk, unsigned int nthreads) in-
forms one SMTP server (referenced by qss ctx) about the new maximum number of threads it should
allow.

The generic function qs control(qss ctx P qss ctx, int direction, unsigned int use, unsigned
int resource) checks the new usage of a resource and based on the input parameter direction decides
whether to (un)throttle one SMTP server. qs control() has the following behavior: throttle the system
iff

• asked for and

• the use of the resource exceeds the upper threshold and

• the current maximum number of threads is greater than 0

else unthrottle the system iff

• asked for and

• the use of the resource is below the lower threshold and

• the current maximum number of threads is less the allowed maximum and

256 Sendmail X, May 4, 2005, 11:44

• the system is not in state OK and

• there is no resource shortage at all

The specific function qs unthrottle(qss ctx P qss ctx) checks whether one SMTP server can be un-
throttled based on the current resource usage. It is called by sm smtps wakeup() which is scheduled by
sm qss wakeup(qmgr ctx P qmgr ctx, thr lock T locktype) as a sleep() task. sm qss wakeup() in
turn is invoked from qm resource() when all resources are available (again).

The function qs comp control(qss ctx P qss ctx, bool unthrottle) is invoked from sm qss react().
It will only check whether the address resolver (SMAR) is available and accordingly call qs control().

4.7.5.7 Updating Recipient Status

The requirements for updating the recipient status after a delivery attempt has been made are described
in Section 2.4.3.4. Section 3.4.16 describes the the functionality, which distinguishes several reasons that
require updating the status of a recipient:

1. after receiving the routing information from SMAR: this may cause a (temporary) error;

2. after receiving status information from a delivery agent. There are two subcases:

(a) some recipients have a return code that differs from the return code for the complete trans-
action, i.e., a recipient had an error (success does not need to be returned, in that case the
transaction return code applies),

(b) there is one return code for the complete transaction.

Note: there is always a return code for the complete transaction, even if all recipients failed, that
code will a temporary error if at least one of the recipient had only a temporary error, otherwise
it’s a permanent failure (the “smallest” failure).

3. an entry is too long in the active queue.

Before examining these cases, a short note about updating the various queues: entries in IQDB are
removed immediately if the recipient was in that queue (this can be done because the recipient is safely
stored in DEFEDB or IBDB). To update DEFEDB and IBDB more complicated measures are taken: a
request is queued that the status must be changed (this may also mean removal of an entry from the
respective DB) while the function goes through all the recipients of the transaction. DEFEDB provides
functions to do this: edb ta rm req() and edb rcpt rm req() which are described in Section 4.10.4. See
Section 4.10.2 about the implementation of updating IBDB based on a list of change requests. However, if
a recipient was successfully delivered on the first attempt, IBDB can be updated directly: even if further
operations fail (which are related to updating the recipient status), the recipient can be removed without
any negative consequences.

4.7.5.7.1 Preserving Order of Updates As explained in Section 3.4.16.1 it is necessary to preserve
the order of updates for recipients and transactions when those changes are committed to DEFEDB.

Sendmail X, May 4, 2005, 11:44 257

4.7.5.7.2 qm-fr-sc-rcpts To update the status for some (failed) recipients (case 2a) the function

qm fr sc rcpts(qmgr ctx P qmgr ctx, sessta id T da ta id, sm rcb P rcb, unsigned int err st)

is used, the RCB contains the recipient status from a DA. This function simply takes the data out of the
RCB and updates the recipient status in the active queue. For this it invokes

aq rcpt status(aq ctx, da ta id, idx, rcpt status, err st, errmsg),

which updates the field aqr status new that is later on used for aq upd ta rcpt cnts() (see 4.7.5.7.6)
which requires the previous and the new status of a recipient to determine which recipients counters to
change in the transaction context.

4.7.5.7.3 qda-update-ta-stat To update the status for an entire transaction (case 2b) from a DA
the function

qda update ta stat(qmgr ctx P qmgr ctx, sessta id T da ta id, sm ret T status, unsigned int
err st, dadb ctx P dadb ctx, dadb entry P dadb entry, aq ta P aq ta, aq rcpt P aq rcpt, thr lock T
locktype)

is called. This function walks through all recipients of a transaction and updates the various DBs and
counters based on the individual recipient status (which may be different from the overall transaction
status). See Section 2.4.3.4 for a high-level description.

The function qda update ta stat() simple invokes

qda upd ta stat(qmgr ctx, da ta id, status, err st, dadb ctx, dadb entry, aq ta, aq rcpt, &edb req hd,
&ibdb req hd, locktype)

(see 4.7.5.7.4) and then writes the changes for DEFEBD and IBDB to disk (unless the result is an error).

4.7.5.7.4 qda-upd-ta-rcpt-stat The function

qda upd ta rcpt stat(qmgr ctx P qmgr ctx, sessta id T da ta id, sm ret T status, unsigned int
err st, dadb ctx P dadb ctx, dadb entry P dadb entry, aq ta P aq ta, aq rcpt P aq rcpt, edb req hd P
edb req hd, ibdb req hd P ibdb req hd, thr lock T locktype)

can be used to update an entire transaction, i.e., all recipients of that transaction, or just an individual
recipient. These two cases are distinguished by specifying exactly one of the DA transaction identifier
da ta id (i.e., the id must be valid – the first character must not be ’\0’) and the recipient aq rcpt (i.e.,
must not be NULL).

This function is also used in other places to update the status of a single recipient, e.g., for failures from the
address resolver (called from the scheduler when it comes across such a recipient). qda upd ta rcpt stat()
invokes

q upd rcpt stat(qmgr ctx, ss ta id, status, err st, aq ta, aq rcpt, edb req hd, ibdb req hd,
&iqdb rcpts done, THR NO LOCK).

(see 4.7.5.7.5) for all recipients that need to be updated. Afterwards it checks whether iqdb rcpts done
is greater than zero in which case the function qda upd iqdb(qmgr ctx, iqdb rcpts done, ss ta id,
cdb id, ibdb req hd) is invoked, see 4.7.5.7.10.

If there are no deliverable recipients in AQ anymore for the current transaction or it is required to update
the transaction, then the function performs the following steps: first check whether there are no recipients
at all, i.e., aq ta->aqt rcpts left is zero, which means that the transaction and the data file (CDB)

258 Sendmail X, May 4, 2005, 11:44

must be removed. If that’s not the case but the transaction needs to be updated in DEFEDB, then
a request is appended to the DEFEDB request list and the flag AQ TA FL DEFEDB is set3 and the flags
AQ TA FL EDB UPD C and AQ TA FL EDB UPD R are cleared. A transaction needs to be updated if at least
one of the following conditions helds:

• When a RCPT is written to/removed from DEFEDB (R) and the counters in the TA change (C)
or the TA is not in DEFEDB (D): R ∧ (C ∨ ¬D)

Note: When a RCPT is updated in DEFEDB then TA is in DEFEDB or the counters change (the
counters do not change iff the RCPT status does not change; if the RCPT status does not change,
then the only reason the RCPT is written to DEFEDB is because it was there earlier and hence
TA was there too – that is a pre-requirement of the algorithm: a RCPT is only in DEFEDB iff its
TA is there too). Hence we can simplify R ∧ (C ∨ ¬D) to R ∧ C.

Note: this is a side-effect of the current scheduler which keeps recipients in AQ until a delivery
attempt is complete. If the scheduler changes to include pre-empting then the update logic must
be modified to take care of that, i.e., the requirement – a RCPT is only in DEFEDB iff its TA is
there too – does not necessarily hold anymore.

• When the counters in TA change (C) and it is in DEFEDB (D): C ∧D

This can be expressed as: (R ∧ C) ∨ (C ∧D) ≡ C ∧ (R ∨D)

Without the simplification it is: (R ∧ (C ∨¬D))∨ (C ∧D) ≡ (R ∧C)∨ (R ∧¬D)∨ (C ∧D) ≡ (C ∧ (R ∨
D)) ∨ (R ∧ ¬D)

If aq ta->aqt rcpts left is zero and the transaction is in DEFEDB, then a remove request is appended
to the request list.

If there are no more recipients in AQ for the TA (aq ta->aqt rcpts == 0), then the TA is removed
from AQ.

If aq ta->aqt rcpts left is zero and the CDB identifier is set (which must be the case), then the entry
is removed from the CDB.

Finally, if the DA TA identifier is valid and the DA context is not NULL, then the session is closed (which
can be done because the scheduler is currently a hack that only uses one transaction per session).

4.7.5.7.5 q-upd-rcpt-stat The function

q upd rcpt stat(qmgr ctx P qmgr ctx, sessta id T ss ta id, sm ret T status, unsigned int err st,
aq ta P aq ta, aq rcpt P aq rcpt, edb req hd P edb req hd, ibdb req hd P ibdb req hd, unsigned
int *piqdb rcpts done, thr lock T locktype)

in turn updates the status for one recipient. If the recipient is in IQDB and it won’t be retried, i.e.,

(rcpt status == SM SUCCESS || smtp reply type(rcpt status) == SMTP RTYPE FAIL || !AQR MORE DESTS(aq rcpt)
|| AQR DEFER(aq rcpt))

then it is immediately removed from IQDB. Next the recipient counters in the transaction are updated:

aq upd ta rcpt cnts(aq ta, aq rcpt->aqr status, rcpt status)

3Note: this is too early, the flag should be set after the transaction has been committed to DEFEDB, but that’s hard to
accomplish because it would require to have another list of transactions which would be updated after DEFEDB has been
successfully changed.

Sendmail X, May 4, 2005, 11:44 259

(see 4.7.5.7.6).

Then one of two functions is called:

1. q upd rcpt ok(qmgr ctx, ss ta id, aq ta, aq rcpt, &ibdb rcpt, rcpt id, edb req hd)

if the recipient has been delivered or is a double bounce that can’t be delivered (and hence will be
dropped on the floor); see 4.7.5.7.7.

2. q upd rcpt fail(qmgr ctx, ss ta id, rcpt status, aq ta, aq rcpt, &ibdb rcpt, rcpt id, edb req hd,
ibdb req hd)

for temporary or permanent errors; see 4.7.5.7.8.

Afterwards it is checked whether there can be no more retries for that recipient in which case it is removed
from AQ4, otherwise the next destination host will be tried and the flags AQR FL SCHED, AQR FL WAIT4UPD,
AQR FL STAT NEW, and AQR FL ERRST UPD are cleared.

4.7.5.7.6 aq-upd-ta-rcpt-cnts The counters in the transaction are updated via

aq upd ta rcpt cnts(aq ta, oldstatus, newstatus)

This function sets the flag AQ TA FL EDB UPD C if a counter has been changed.

4.7.5.7.7 q-upd-rcpt-ok Case 1 (from 4.7.5.7.5): q upd rcpt ok() is responsible to remove a recip-
ient from the queues in which it is stored.

q upd rcpt ok(qmgr ctx P qmgr ctx, sessta id T ss ta id, aq ta P aq ta, aq rcpt P aq rcpt, ibdb rcpt P
ibdb rcpt, rcpt id T rcpt id, edb req hd P edb req hd)

In case of a double bounce it decrements the number of recipients left and logs the problem (dropped a
double bounce). Then it removes the recipient from IBDB if it is stored there (directly, without going via
the request queue), or from DEFEDB by appending the remove operation to the request queue. Finally,
if the recipient is a (double) bounce, the function qda upd dsn() is called to remove the recipients for
which the DSN has been generated; see 4.7.5.7.9.

4.7.5.7.8 q-upd-rcpt-fail Case 2 (from 4.7.5.7.5): q upd rcpt fail() examines rcpt status to
decide whether it is a temporary error or a permanent failure. In the former case the time in the queue
is checked: if it exceeds a limit and there are no more destination hosts to try or the recipient must be
deferred (e.g., address resolver failure), then two flags are set: AQR FL PERM and AQR FL DSN TMT, in the
latter case the flags AQR FL PERM and AQR FL DSN PERM are set.

If the recipient can’t be delivered and is not a double bounce itself then qm bounce add(qmgr ctx,
aq ta, aq rcpt, errmsg) is called to create a bounce message for this recipient; see 4.7.5.8.1.

If there are no more destinations to try or the recipient must be deferred (because of an address resolver
problem or because it is too long in AQ), or a bounce message has been generated5, then the number of
tries is incremented, the next time to try is computed if necessary (i.e., recipient has only a temporary
failure or it has a permanent failure but no bounce because generation of bounce recipient failed), and

4this is ok because the recipient is in a persistent DB already, so even if the update requests for DEFEDB or IBDB fail
the recipient can be recovered from either DB.

5the latter case is not really necessary but a result of the current bounce handling implementation, e.g., qda upd dsn()

assumes that the recipients are in DEFEDB.

260 Sendmail X, May 4, 2005, 11:44

a request to update the recipient status in DEFEDB is appended to the request list. If that was suc-
cessful and the recipient is a (double) bounce then qda upd dsn(qmgr ctx, aq ta, aq rcpt, ss ta id,
edb req hd) is called to remove the recipients for which this was a bounce (see 4.7.5.7.9).

If the recipient must be retried, i.e., it is not permanent failure then it is added to the EDB cache:
edbc add(qmgr ctx->qmgr edbc, rcpt id, aq rcpt->aqr next try, false)

If the recipient was in IQDB then a status update is appended to the request list for IBDB using the
function ibdb rcpt app().

Finally q upd rcpt fail() returns a flag value that indicates either an error or whether some actions (in
this case: activate the address resolver) need to be performed by the caller.

4.7.5.7.9 qda-upd-dsn qda upd dsn(qmgr ctx P qmgr ctx, aq ta P aq ta, aq rcpt P aq rcpt,
sessta id T ss ta id, edb req hd P edb req hd)

is responsible for removing the recipients for which the DSN has been generated, which is done by going
through its list (aq rcpt->aqr dsns[]) and appending remove requests to the DEFEDB change queue.
It also updates the number of recipients left if necessary, i.e., if the DSN was for more than one recipient,
and resets the used data structures.

4.7.5.7.10 qda-upd-iqdb qda upd iqdb(qmgr ctx P qmgr ctx, unsigned int iqdb rcpts done,
sessta id T ss ta id, cdb id P cdb id, ibdb req hd P ibdb req hd) updates IQDB status for one
transaction; if all recipients have been delivered then it removes the transaction from IQDB using
iqdb trans rm(), adds a request to remove it from IBDB via ibdb ta app() and removes it from the
internal DB using qss ta free().

4.7.5.8 Handling Bounces

The current implementation of sendmail X does not support DSN per RFC 1894, but it creates non-
delivery reports in a “free” format; see also 4.7.5.5.

4.7.5.8.1 qm-bounce-add If a bounce message is generated the function

qm bounce add(qmgr ctx P qmgr ctx, aq ta P aq ta, aq rcpt P aq rcpt, sm str P errmsg)

is used. See Section 4.10.3 about the data structures that are relevant here (AQ transaction and recipient),
and Section 4.7.3 about the flags (esp. those containing DSN or BNC in the name).

To generate a bounce, a new recipient is created (the “bounce recipient”) using the function qm bounce new()
unless the transaction already has a bounce recipient (that hasn’t been scheduled yet). This recipient has
an array aqr dsns which contains the indices of the recipients for which this recipient contains the bounce
message. Whether a transaction already has a (double) bounce recipient is recorded in the transaction
(see 4.10.3): aqt bounce idx and aqt dbl bounce idx. These can be reused to add more recipients to a
bounce recipient (instead of sending one DSN per bounce).

4.7.5.8.2 qm-bounce-new The function

qm bounce new(qmgr ctx P qmgr ctx, aq ta P aq ta, bool dbl bounce, aq rcpt P *aq rcpt bounce)

creates a new bounce recipient. It uses aq ta->aqt nxt idx as the index for the bounce recipient (after
checking it against the maximum value: currently the index is only 16 bits) and stores the value in

Sendmail X, May 4, 2005, 11:44 261

aqt bounce idx or aqt dbl bounce idx, respectively. aq rcpt add() is used to add a new recipient to
AQ, then an array of size aq ta->aqt rcpts tot is created to hold the indices of those recipients for
which this will be a bounce. This array is in general too big, some optimization can be applied (later
on). qm bounce new() then fills in the data for the recipient and sends it to the address resolver using
qmgr rcpt2ar(). It also increases the number of recipients for this transaction (aqt rcpts tot and
aqt rcpts). This may create an inconsistent state since the bounce recipient is only in AQ, not in a
persistent DB (DEFEDB), see 4.7.5.8.3.

4.7.5.8.3 Bounce Recipients are only created in AQ A bounce recipient is not written to a
persistent DB when it is generated, but the failed recipients are written to DEFEDB. Only when a
delivery attempt for a bounce message fails the bounce recipient is written to DEFEDB and the recipients
for which it is a bounce are removed by qda upd dsn(), see 4.7.5.7.9. Hence when the system crashes
before the bounce is delivered (or at least tried and then written to the queue), the bounce will be lost.
However, the original recipients that caused the bounce are in DEFEDB, and hence the bounce message
can be reconstructed.

Alternatively the bounce recipient can be written to one of the persistent queues and the original recipients
can be removed, this could reduce the on-disk storage. However, it requires that the RCB to store the
bounce recipient is fairly large because it contains the complete error text for each failed recipient and a
large list of recipient indices. Theoretically it might also be possible to store the error text in IBDB, but
that most likely requires changes to the storage format which does not make much sense because bounces
should occur infrequently. Moreover, recovery of IBDB would become more complicated. Additionally,
the failed recipient might not be in IBDB but in DEFEDB, hence making it even harder to correctly
reconstruct the bounce data because it can be spread out over various places.

This is a place where optimizations are certainly possible, but it is currently not important enough (it is
more important to implement the full sendmail X.0 system instead of optimizing bounces).

4.7.5.9 DSN: Delayed

As explained in Section 2.4.6.3 there are 8 states with respect to delayed DSNs which means 3 bits are
required for a recipient to denote those states.

1. did not request dDSN: nothing to do.

2. did request dDSN:

(a) no dDSN generated (yet): in case of a temporary error the timeout needs to be checked. If it
is exceeded, then generate a dDSN and proceed to state 2(b)i.

(b) dDSN generated.

i. dDSN not yet delivered: as soon as the dDSN has been delivered, all recipients for which
this was a dDSN must be updated accordingly (state 2(b)ii). This means that entries
in DEFEDB need to be changed after a successful delivery, which causes extra disk I/O.
Question: can we avoid this extra I/O? We could keep the dDSN in AQ and update the
information the next time the recipient is read into AQ. This costs a bit of memory but
avoids disk I/O and is therefore preferred. When a recipient is read from DEFEDB and
it is in state 2(b)i then check AQ about the dDSN.
A. If it’s there and has been delivered then change the state of the recipient to 2(b)ii.

Moreover, remove this recipient from the list of recipients in dDSN and if that list
becomes empty then remove the dDSN itself.

262 Sendmail X, May 4, 2005, 11:44

B. If it’s there and has not yet been delivered then we have a problem: we need to wait
to the end of the delivery attempt to see what kind of updates need to be done. This
is non-trivial.

C. If the dDSN is not in AQ then change the state back to 2a.
There are more cases to consider: delivery of the dDSN may fail (temporarily or perma-
nently). In that case the recipients must be updated too. Could we store some information
in EDBC? Or just keep a list of recipient-ids around in which stored/delivered dDSNs are
listed? That is not that simple because it requires cross-references (dDSN to recipient,
recipient to dDSN) for bookkeeping (when to remove an entry from that list, i.e., when
are all referenced recipients updated).

ii. dDSN delivered: done.

The complexity of updating recipients in case 2(b)i is very high. That can cause programming errors and
maybe inconsistencies in AQ or DEFEDB. Question: Is there are simpler approach to the problem?

Here is one proposal: write the dDSN to DEFEDB and immediately change the state to 2(b)ii, as the
dDSN will be safely stored. Note: if updating DEFEDB fails then the recipient for which this is a dDSN is
not written to DEFEDB either, hence this approach should be safe. Moreover, it is significantly simpler,
and causes only a bit extra disk I/O because the recipient is written to DEFEDB anyway. This approach
causes the handling of bounces and dDSNs to be different, which however should not matter much as the
approach explained above is definitely different from bounce handling. However, this approach causes
another problem: dDSN will be sent individually; see Section 2.4.6.

Why are dDSNs and bounces (“failure” DSNs: fDSN) so different? A fDSN means that the original
recipients will be removed while they will be retried for a dDSN. So for a fDSN DEFEDB must be
changed anyways (recipients must be removed), but for a dDSN it could (theoretically) be avoided.

4.7.5.10 AR to QMGR

The address resolver sends resolved addresses to QMGR which are used in turn by the scheduler for
delivery attempts. The basic protocol returns a DA that must be used for delivery and a number of
addresses to try.

A significantly more complicated part is alias expansion (see also Section 3.4.15.1).

4.8 Address Resolver Implementation

The address resolver is called smar for sendmail address resolver since ar is already used. SMAR is based
on the event threads library described in Section 4.3.8.

The description below is based on the implementation from 2003-06-26 and hence not up to date.

The AR uses a very simple mailertable which must be in a strict form: a domain part of an e-mail address,
then one or more whitespace characters, followed by the IPv4 address (in square brackets) of the host to
which the mail should be sent or the hostname itself. If an entry is not found in the mailertable or the
RHS is a hostname, DNS lookups (for MX and A records) are performed (see Section 4.3.10 for the DNS
library).

The main context for the AR has currently the following elements:

struct smar_ctx_S

Sendmail X, May 4, 2005, 11:44 263

{
sm_magic_T sm_magic;
pthread_mutex_t smar_mutex;
int smar_status; /* see below, SMAR_ST_* */
sm_evthr_ctx_P smar_ev_ctx; /* event thread context */
int smar_qfd; /* fd for communication with QMGR */
sm_evthr_task_P smar_qmgr_tsk; /* QMGR communication task */
rcbcom_ctx_T smar_qmgr_com; /* QMGR communication context */
sm_log_ctx_P smar_lctx;
ipv4_T smar_nameserveripv4;
unsigned int smar_dns_flags;
dns_tsk_P smar_dns_tsk;
dns_mgr_ctx_P smar_dns_mgr_ctx;
bht_P smar_mt; /* "mailertable" (XXX HACK) */

};

4.8.1 Resolving Recipient Addresses

To store addresses sent by the QMGR to the AR for resolving, the following structure is used:

struct smar_rcpt_S
{

sm_str_P arr_rcpt_pa; /* printable addr */
rcpt_id_T arr_rcpt_id; /* rcpt id */
sm_str_P arr_domain_pa;
unsigned int arr_flags; /* status of address resolving */
unsigned int arr_da; /* DA */
int arr_n_mx; /* total number of MX records */
int arr_c_mx; /* current number of MX records */
int arr_n_a; /* total number of A records */
smar_dns_T *arr_res; /* array of results */
ipv4_T arr_ip4; /* single A record */
sm_rcbe_P arr_rcbe; /* RCB to write back result */
smar_ctx_P arr_smar_ctx; /* pointer back to SMAR context */

};

arr n mx stores the total number of MX records after the initial query for an MX record comes back.
arr c mx keeps track of the current number of answer for those MX records, i.e., when both variables
have the same value then all outstanding requests have been answered and the complete result can be
returned to the QMGR.

The array of results has the following type:

struct smar_dns_S
{

unsigned int ardns_ttl; /* TTL from DNS */
unsigned short ardns_pref; /* preference from DNS */
sm_cstr_P ardns_name; /* name from DNS */
int ardns_n_a; /* number of A records */
ipv4_T *ardns_a; /* pointer to list of A records */

264 Sendmail X, May 4, 2005, 11:44

};

The address resolver receives recipient addresses from QMGR, creates a recipient structure using

smar rcpt new(smar ctx, &smar rcpt)

fills in the necessary data, and invokes

smar rcpt rslv(smar ctx, smar rcpt)

which first checks the “mailertable” and if it can’t find a matching entry, then it will invoke the DNS
resolver (see Section 4.3.10):

dns req add(dns mgr ctx, q, T MX, smar rcpt cb, smar rcpt)

The callback function

smar rcpt cb(dns res P dns res, void *ctx)

locks smar ctx and analyzes dns res as follows.

If the result is DNSR NOTFOUND and the lookup was for an MX record then it will simply try to find A
records. If it is another error then a general error handling section will be invoked.

First it will be checked whether the query was for an A record in which case arr c mx is incremented.
Then the error type (temporary or permanent) is checked and a flag in smar rcpt is set in the former
case. An error is returned to the caller iff the query was for an MX record or the query was for an A record
and all records have been received and there was a temporary error. If that is not the case, but all open
requests are answered, then the results are returned to the caller using smar rcpt re all(smar rcpt)
and thereafter the rcpt structure is freed using smar rcpt free(smar rcpt).

If the result was not an error then two cases have to be taken care of:

1. MX record: set the variable arr n mx to the number of MX records (1 if none has been found,
thereby “pretending” that the host has exactly one MX record, i.e., itself), and initialize arr c mx
and arr n a to 0. Allocate an array of the correct size (arr n mx) to hold the results and populate
that array with the return values from the DNS query. Additionally start a DNS request for each
hostname to get its A records: dns req add(dns mgr ctx, q, T A, smar rcpt cb, ctx).

2. A record: for each returned value look up the matching MX name in the result array arr res and
then store all A records in a newly allocated array ardns a. If all entries have been received then
the results are returned to the caller (see above).

4.8.2 Alias Expansion

Expanding aliases makes the address resolver significantly more complex. Unfortunately the current
implementation does not allow for a simple layer around the current recipient resolver. This is due to
the asynchronous nature of the DNS library which requires the use of callback functions. As explained
in the previous section, the callback function checks whether all results arrived in which case it will put
the data into an RCB and send it back to QMGR.

4.8.3 Aliases: Owner- Handling

Question: how to implement owner-alias and alias-request? Problem: bounces go to owner-alias (see also
Section 2.6.7). Does this mean a transaction should be “cloned” or should the transaction context be

Sendmail X, May 4, 2005, 11:44 265

extended? What if mail is sent to two lists and two ”normal” rcpts?

mail from:<sender>
rcpt to:<list1>
rcpt to:<list2>
rcpt to:<rcpt1>
rcpt to:<rcpt2>

Usually a bounce goes to sender. However, if mail to listX fails, the function that creates bounces needs
to handle this differently. Here’s a list of possible ways to handle owner- aliases and the problems with
them.

1. Proposal: keep a list of owner-alias in the transaction context and reference them by index in each
recipient. Plus a flag saying that it’s valid, or less than 0 for not valid? Or 0: original sender, greater
than 0: index+1 (because the content is initialized to 0 so any other value must be explicitly set).

Problems:

(a) alias lists can be expanded recursively, so just keeping the original recipient addresses (listX)
might not be enough, there can be (intermediate) addresses. It is still possible to handle this
by having a list of those addresses in the transaction context. However, as soon as there is
more data than just the address to handle, this is getting more complicated to implement, and
harder to maintain. Examples:

i. Some counters in the transaction context are per sender address, e.g., the number of
recipients that have been sent to the address resolver. This counter is used by the scheduler
to determine whether it can create a delivery transaction – if most of the recipients are
still being resolved the MX piggybacking is inefficient. However, the counter must be per
sender address because a delivery transaction is of course only for one sender address,
hence a single counter is wrong if there are multiple owner-alias addresses. The counter is
also wrong in case of bounces because those are sent to a different recipient (the original
sender).

ii. There might be DSN requests per recipient address. Question: how are these inherited by
expanded recipients? In some case those atttributes most not be inherited, e.g., requests
for delivery notifications, otherwise the members of the list would be exposed.

(b) each recipient is expanded individually, which in turn means there can be multiple owner-aliases
in the transaction context (one list per recipient). This can require that arrays are grown to
accommodate the additional addresses, which is always a problem because the additional
memory allocation can fail. Moreover, it makes record keeping more complicated.

2. Proposal: Maybe it would be useful to keep a “tree” of recipients? Mark a recipient as “expanded”
(i.e., it was the LHS of an alias) and have a flag “has-owner”. Then other recipients can refer to
that recipient (by index).

Problems:

(a) how to deal with those “expanded” recipients? They must be removed when all the references
are gone. In the worst case they can be removed when the transaction is removed. In that
case the transaction context must have a list of expanded recipients (those could be stored in
a bitfield), or the queue API (DEFEDB) must provide a function to remove all entries which
refer to a transaction id.

266 Sendmail X, May 4, 2005, 11:44

(b) When recipients are read from DEFEDB, the corresponding expanded recipients must be read
too, otherwise the address to use as envelope sender is missing. This increases the number of
items in AQ.

3. Proposal: “envelope splitting” as used in sendmail 8 “solves” the problems of proposal 2 by creating
new transactions. This avoids the handling of special recipients that contains not much more
information than just the owner address.

Problems:

(a) It requires to create new transaction identifiers which is currently only done by the SMTP
servers. It might be possible to give QMGR a reserved SMTP server “process id” which can
be used to generate unique transaction identifiers, see Section 3.5.2.4.2.

(b) Envelope splitting causes multiple transactions to refer to the same content. This makes
deciding when to unlink an entry in CDB significantly more complicated. sendmail 8 relies on
the link count of the filesystem (check), but sendmail X should not do that because it makes
CDB more complicated and dependent on a certain implementation (unless emulated for others
which is not easy because CDB is currently just a library, not a process that maintains data).

It might be possible to add another counter: aqt clones which counts the number of cloned
transactions. A cloned transaction contains a link to the original transaction (just the TA id).
If the number of recipients aqt rcpts left is decreased to zero, then it is checked whether the
TA is cloned in which case the clone counter in the original TA is decreased. A CDB entry is
removed if the two counters aqt rcpts left and aqt clones in a original TA are both zero.

Overall, proposal 3 seems like the “cleanest” solution even though it currently (2004-06-30) has the biggest
impact on the implementation, i.e., it requires a lot of changes.

4.9 Milter

4.9.1 Sendmail 8 Milter Protocol

Note: this is based on an old document and might not be up to date; it is listed here only as a starting
point for the sendmail X protocol.

The protocol consists of simple data strings which are tagged with a single character. The first element
of each exchange is a 32 bit integer which denotes the total length of the string to follow, including the
command and maybe NUL characters. Note: since we control both sides, we can rely on those. If the data
is incorrect, we can simply terminate the connection and log an error.

The characters for specifying the data are:

MTA to Milter (upper case char):

Sendmail X, May 4, 2005, 11:44 267

char meaning parameters
A Abort -
B Body chunk buffer NUL
C Connection information hostname NUL family port sockinfo
D Define macro Where6 (name NUL value NUL) *
E final body chunk (End) buffer NUL
H HELO heloname NUL
L Header field NUL value NUL
M MAIL from sender NUL (arg NUL)*
N End of headers (EOH) -
O Option negotiation version fflags pflags
Q QUIT (once per connection) -
R RCPT to recipient NUL (arg NUL)*

The buffers that transfer body chunks can contain NUL characters, hence the length parameter is impor-
tant. For fflags and pflags see 4.9.1.2.

version, fflags, and pflags are 32 bit integers (network format). family is one byte:

family data
U unknown; SOCKADDR = NULL
4 AF INET
6 AF INET6
L AF UNIX

port is a 16 bit integer (currently assumed to be a u short – need uint16 t to assure this) (network
format) (empty for U).

family sockinfo
U empty
4 string (inet aton/ntoa)
6 string (inet pton/ntop) (optional IPv6: address prefix)
L path

unless U is used, the string includes the trailing NUL.

Milter to MTA (lower case and punctuation char, except for negotiation):

char meaning parameters
O Option negotiation version fflags pflags
+ add recipient rcpt NUL
- remove recipient rcpt NUL
a accept -
b replace body (chunk) buffer NUL
c continue -
d discard -
h add header field NUL value NUL
m modify header index (32 bit) field NUL replacement NUL
p progress -
q quarantine reason NUL
r reject -
t tempfail -
y reply code rcode SPACE xcode SPACE message NUL

268 Sendmail X, May 4, 2005, 11:44

4.9.1.1 Macros

Macros and their values can precede Connect, HELO, MAIL, and RCPT. The first character (Where) after
the command denotes the command character to which those macros belong (C, H, M, R). Implementation
note: the entire ”string” is stored in the context (array of pointers), and searched in smfi getsymval().

The default macros expected to be passed from MTA to milter per-command are (this can be changed
using the Milter.macros.* options):

Where Macros
C daemon name, if name, if addr, j,
H tls version, cipher, cipher bits, cert subject, cert issuer
M i, auth type, auth authen, auth ssf, auth author,

mail mailer, mail host, mail addr
R rcpt mailer, rcpt host, rcpt addr

All macros stay in effect from the point they are received until the end of the connection with the
exception of rcpt * which should only be set during the call to xxfi envrcpt().

4.9.1.2 Option Negotiation

1. MTA sends libmilter SMFI VERSION, SMFI CURR ACTS, SMFI CURR PROT (version, fflags:
possible actions, pflags: possible extra commands)

2. libmilter aborts if MTA version is less than filter version

3. libmilter aborts if MTA flags don’t cover all requested filter flags

4. libmilter aborts if MTA protocol bits don’t cover ctx pflags (protocol related)

5. libmilter sends MTA filter version (xxfi version), filter flags (xxfi flags: required actions), and
protocol bits (ctx pflags).

6. MTA aborts if libmilter version is 1 or greater than MTA version (SMFI VERSION)

7. MTA aborts if libmilter flags aren’t all included in MTA flags (SMFI CURR ACTS)

8. MTA aborts if libmilter protocol bits aren’t all included in MTA protocol bits (SMFI CURR PROT)

9. Work continues as normal.

Note: there should be a better way to deal with differences in the available actions and extra commands:
capabilities and requirements should be announced and then each side decides on its own whether those
are sufficient and fulfilled, respectively.

4.9.2 SMTPS - Milter Protocol

Here are the protocol exchange types:

Sendmail X, May 4, 2005, 11:44 269

RT S2M NID uint32 id of SMTPS, new connection
RT S2M ID uint32 id of SMTPS
RT S2M CID uint32 id of SMTPS, closing (shutting down)
RT S2M MAXTHRDS uint32 max number of threads
RT S2M NSEID str new session id
RT S2M EHLO str ehlo string
RT S2M SEID str session id
RT S2M CSEID str close session id
RT S2M CLTIP4 uint32 client IPv4 address
RT S2M NTAID str new transaction id
RT S2M TAID str transaction id
RT S2M MAIL str MAIL from
RT S2M RCPT IDX uint32 rcpt idx
RT S2M RCPT str RCPT to
RT S2M DATA str data
RT S2M BODY str body chunk
RT S2M DOT str final data chunk
RT S2M ARG str argument (for MAIL, RCPT)
RT S2M MACW uint32 macro: Where (see 4.9.1.1)
RT S2M MACN str macro name
RT S2M MACV str macro value
RT S2M PROT uint32 SMTPS - PMILTER protocol version
RT S2M CAP uint32 SMTPS capabilities
RT S2M REQ uint32 SMTPS requirements

Initial setup: SMTPS sends libmilter its id (RT S2M NID) and the maximum number of threads (RT S2M MAXTHRDS)
it is going to create. The latter value can be used by libmilter to size internal tables if necessary.

ToDo: option negotation: must be better than what is done in sm8 (see 4.9.1.2), see 4.9.2.1 for possible
solutions.

For the first test implementation it is: SMTP server sends RT S2M PROT, RT S2M CAP, RT S2M REQ,
RT S2M MAXTHRDS. Milter responds with RT M2S ID, RT M2S PROT, RT M2S CAP, RT M2S REQ,

The rest follows ESMTP (all protocol exchanges include RT S2M ID as first element).

1. connection from client: RT S2M NSEID, RT S2M CLTIP4 (later on it could be more, see sm8
version).

2. EHLO command received: RT S2M SEID, RT S2M EHLO

3. MAIL command has been given: RT S2M SEID, RT S2M NTAID, RT S2M MAIL, if necessary:
RT S2M ARG (maybe multiple times).

4. RCPT command has been given. RT S2M SEID, RT S2M TAID, RT S2M RCPT IDX, RT S2M RCPT
if necessary: RT S2M ARG (maybe multiple times).

5. DATA command has been given. RT S2M SEID, RT S2M TAID, RT S2M DATA

6. body chunks RT S2M SEID, RT S2M TAID, RT S2M BODY

7. Final dot of DATA section has been given RT S2M SEID, RT S2M TAID, RT S2M DOT

270 Sendmail X, May 4, 2005, 11:44

8. At the appropriate stages in the protocol macros can be transferred: RT S2M MACW (one char-
acter), RT S2M MACN, RT S2M MACV.

9. QUIT: RT S2M CSEID.

Replies use the following record types:

RT M2S ID uint32 id of SMTPS
RT M2S SEID str session id
RT M2S RCODE uint32 SMTP reply code
RT M2S PROT uint32 SMTPS - PMILTER protocol version
RT M2S CAP uint32 PMILTER capabilities
RT M2S REQ uint32 PMILTER requirements

Each reply must contain the SMTP server id RT M2S ID and the session id RT M2S SEID.

The possible reply codes are:

250 accept
350 continue
450 temporary error
550 permanent error

As specified in the sendmail 8 libmilter documentation “accept” means that the entire session or trans-
action will be accepted and no further commands should be sent to the milter. “continue” means the
milter wants session/transaction to continue, while the other two have the obvious meaning.

If an SMTP server shuts down, it notifies libmilter by sending RT S2M CID.

4.9.2.1 Option Negotiation

Basic idea:

protocol version: major/minor, major must match, minor can be different.

Announce capabilities and requirements (both sides). libmilter: a milter can register a callback the
decides whether the capabilities (of libmilter and MTA: libmilter can be dynamically linked, or some
source code is linked against an old version) are sufficient and give its OK (or error and hence abort).

4.9.2.2 Differences to Milter

The most obvious difference is that a policy milter cannot change the body of a mail nor can it add or
replace headers. It also cannot delete or add recipients.

Another difference is that sendmail X does not send headers individually to the policy milter, it just send
the mail (in chunks). It is probably the best to provide a library function that can parse headers which
can be called by a milter if necessary. It would maintain a state (how far it read in the buffer). A small
problem may arise if the headers are larger than the first buffer because then it might need to reassemble
a header line (if it crosses a buffer boundary which would be very likely if it actually exceeds the size).

Sendmail X, May 4, 2005, 11:44 271

4.10 Implementation of Databases and Caches for Envelopes,
Contents, and Connections

4.10.1 Incoming Envelope Database

IQDB is currently implemented as typed RSC, see Section 4.3.5.1. IQDB simply contains references to
qss sess T, qss ta T, and qss rcpts T, see Section 4.7.3, it does not have its own data structures, it
merely allows for a way to access the data via a key (SMTPS session, transaction, recipient identifier).

4.10.2 Incoming Envelope Database Disk Backup

The API of IBDB is described in Section 3.13.4.3.

The current implementation requires more functions than described there. This is an outcome of the
requirement to updata the various queues safely and in a transaction based manner. To achieve this, a
list of change request can be maintained; the elements of this list have the following structure:

struct ibdb_req_S
{
unsigned int ibdb_req_type;
int ibdb_req_status;
sessta_id_T ibdb_req_ss_ta_id; /* SMTPS transaction id */
sm_str_P ibdb_req_addr_pa; /* MAIL/RCPT address */
cdb_id_P ibdb_req_cdb_id;
unsigned int ibdb_req_nrcpts;
rcpt_idx_T ibdb_req_rcpt_idx; /* RCPT index */
SIMPLEQ_ENTRY(ibdb_req_S) ibdb_req_link;

};

The functions to deal with the request lists are:

sm ret T ibdb rcpt app(ibdb ctx P ibdb ctx, ibdb rcpt P ibdb rcpt, ibdb req hd P ibdb req hd,
int status) appends a recipient change request.

sm ret T ibdb ta app(ibdb ctx P ibdb ctx, ibdb ta P ibdb ta, ibdb req hd P ibdb req hd, int
status) appends a transaction change request.

sm ret T ibdb req cancel(ibdb ctx P ibdb ctx, ibdb req hd P ibdb req hd) cancel all the requests
in the list.

sm ret T ibdb wr status(ibdb ctx P ibdb ctx, ibdb req hd P ibdb req hd) perform the status up-
dates as specified by the request list.

4.10.3 Active Envelope Database

The active queue currently uses the following structure as context:

struct aq_ctx_S
{

272 Sendmail X, May 4, 2005, 11:44

pthread_mutex_t aq_mutex; /* only one mutex for now */
unsigned int aq_limit; /* maximum number of entries */
unsigned int aq_entries; /* current number of entries */
unsigned int aq_t_da; /* entries being delivered */

aq_tas_T aq_tas;
aq_rcpts_T aq_rcpts;

};

For now we just use lists of aq ta/aq dta/aq rcpt structures. Of course we need better access methods
later on. Currently we will use FIFO as only scheduling strategy.

A recipient context consists of the following elements:

struct aq_rcpt_S
{
sessta_id_T aqr_ss_ta_id; /* ta id in SMTPS */
sessta_id_T aqr_da_ta_id; /* ta id in DA */
sm_str_P aqr_rcpt_pa; /* printable addr */
smtp_status_T aqr_status; /* status */
smtp_status_T aqr_status_new; /* new status */
unsigned int aqr_err_st; /* state which caused error */
unsigned int aqr_flags; /* flags */
rcpt_idx_T aqr_rcpt_idx; /* rcpt idx */
unsigned int aqr_tries; /* # of delivery attempts */
unsigned int aqr_da_idx; /* DA idx (kind of DA) */

/* SMTPC id (actually selected DA) */
int aqr_qsc_id;

/*
** HACK! Need list of addresses. Do we only need IP addresses
** or do we need more (MX records, TTLs)? We need at least some
** kind of ordering, i.e., the priority. This is needed for the
** scheduler (if a domain has several MX records with the same
** priority, we can deliver to any of those, there’s no order
** between them). Moreover, if we store this data in DEFEDB,
** we also need TTLs.
*/

/*
** Number of entries in address array.
** Should this be "int" instead and denote the maximum index,
** where -1 means: no entries?
** Currently the check for "is there another entry" is
** (aqr_addr_cur < aqr_addr_max - 1)
** i.e., valid entries are 0 to aqr_addr_max - 1.
*/

unsigned int aqr_addr_max;
unsigned int aqr_addr_cur; /* cur idx in address array */

Sendmail X, May 4, 2005, 11:44 273

aq_raddr_T *aqr_addrs; /* array of addresses */

/* XXX Hack */
ipv4_T aqr_addr_fail; /* failed address */

/* address storage to use if memory allocaction failed */
aq_raddr_T aqr_addr_mf;

time_T aqr_entered; /* entered into AQ */
time_T aqr_st_time; /* start time (rcvd) */
time_T aqr_last_try; /* last time scheduled */

/* next time to try (after it has been stored in DEFEDB) */
time_T aqr_next_try;

/* Error message if delivery failed */
sm_str_P aqr_msg;

/*
** Bounce recipient: stores list of recipient indices for which
** this is a bounce message.
** Note: if this is stored in DEFEDB, then the array doesn’t need
** to be saved provided that the recipients are removed in the
** same (DB) transaction because the bounce recipient contains
** all necessary data for the DSN. If, however, the recipients
** are not removed "simultaneously, then it is a bid harder to
** get consistency because it isn’t obvious for which recipients
** this bounce has been created. That data is only indirectly
** available through aqr_bounce_idx (see below).
*/

sm_str_P aqr_dsn_msg;
unsigned int aqr_dsn_rcpts;
unsigned int aqr_dsn_rcpts_max;
rcpt_idx_T *aqr_dsns; /* array of rcpt indices */

/*
** rcpt idx for bounce: stores the rcpt_idx (> 0) if a bounce
** for this recipient is generated and being delivered.
** This is used as "semaphore" to avoid multiple bounces for
** the same recipient (needs to be stored in DEFEDB).
*/

rcpt_idx_T aqr_bounce_idx;

/* linked list for AQ, currently this is the way to access all rcpts */
TAILQ_ENTRY(aq_rcpt_S) aqr_db_link; /* links */

/*
** Linked lists for:
** - SMTPS transaction:

274 Sendmail X, May 4, 2005, 11:44

** to find all recipients for the original transaction
** (to find out whether they can be delivered in the same
** transaction, i.e., same DA, + MX piggybacking)
** - DA transaction:
** to find the recipients that belong to one delivery attempt
** and update their status
** Link to ta:
** to update the recipient counter(s).
*/

sm_ring_T aqr_ss_link;
sm_ring_T aqr_da_link;
aq_ta_P aqr_ss_ta; /* transaction */

};

This structure contains linked lists for:

• for the active queue itself aqr db link, currently this is the way to access all recipients

• SMTPS transaction aqr ss link: to find all recipients for the original transaction (to find out
whether they can be delivered in the same transaction, i.e., same DA, and for MX piggybacking).

• DA transaction aqr da link: to find the recipients that belong to one delivery attempt and update
their status.

A reference to the transaction aqr ss ta is used to make it easier to update the recipient counter(s).

A transaction context has these elements:

struct aq_ta_S
{
/* XXX other times? */
time_T aqt_st_time; /* start time (received) */
aq_mail_P aqt_mail; /* mail from */

/* XXX only in aq_da_ta */
unsigned int aqt_rcpts; /* number of recipients in AQ */
unsigned int aqt_rcpts_ar; /* rcpts to receive from AR */
unsigned int aqt_rcpts_arf; /* #of entries with SMAR failure */

/* Number of recipients in DEFEDB */
unsigned int aqt_rcpts_tot; /* total number of recipients */
unsigned int aqt_rcpts_left; /* rcpts still to deliver */
unsigned int aqt_rcpts_temp; /* rcpts temp failed */
unsigned int aqt_rcpts_perm; /* rcpts perm failed */
unsigned int aqt_rcpts_tried; /* rcpts already tried */
rcpt_idx_T aqt_nxt_idx; /* next recipient index */

unsigned int aqt_state;
unsigned int aqt_flags;

/*

Sendmail X, May 4, 2005, 11:44 275

** rcpt idx for (double) bounce; when a bounce is needed a recipient
** struct is created, its rcpt_idx is this bounce_idx.
** It should be aqt_rcpts_tot (+1) when it is created; afterwards
** aqt_rcpts_tot is increased of course.
*/

rcpt_idx_T aqt_bounce_idx;
rcpt_idx_T aqt_dbl_bounce_idx;

sessta_id_T aqt_ss_ta_id; /* ta id in SMTPS */
cdb_id_P aqt_cdb_id;
TAILQ_ENTRY(aq_ta_S) aqt_ta_l; /* links */

/* XXX add list of recipients? that makes lookups easier... see above */
};

The field aqt ta l links all transactions in the active queue together.

As it can be seen, there are many counters in the transaction context:

• Two counters are related to the recipients that are currently in the active queue, which may be less
than the number of recipients of the transaction.

1. aqt rcpts: number of recipients in AQ.

2. aqt rcpts ar: number of recipients still to receive from AR, i.e., their routing information is
currently determined.

• These counters are related to the overall number of recipients, no matter whether they are in the
active queue or elsewhere (DEFEDB, IBDB):

1. aqt rcpts tot: total number of recipients.

2. aqt rcpts left: recipients still to deliver.

3. aqt rcpts perm: recipients permanently failed.

The number of recipients that encountered a temporary failure aqt rcpts temp does not reflect
those recipients that are in DEFEDB. When a recipient is written to DEFEDB, the status flag
indicating a temporary failure will not be saved. Hence when a recipient is tried again, the previous
temporary failure is mostly ignored except for bookkeeping.

4.10.4 Deferred Envelope Database Implementation

The current implementation (2003-01-01) of the main queue uses Berkeley DB 4.1 (proposal 2 from
Section 3.13.6.1).

The main context looks like this:

typedef SIMPLEQ_HEAD(, edb_req_S) edb_req_hd_T, *edb_req_hd_P;
struct edb_ctx_S
{
pthread_mutex_t edb_mutex; /* only one mutex for now */

276 Sendmail X, May 4, 2005, 11:44

unsigned int edb_entries; /* current number of entries */
edb_req_hd_T edb_reql_wr; /* request list (wr) */
edb_req_hd_T edb_reql_pool;
DB_ENV *edb_bdbenv;
DB *edb_bdb; /* Berkeley DB */

};

A change request has the following structure:

struct edb_req_S
{
unsigned int edb_req_type;
smtp_id_T edb_req_id;
sm_rcb_P edb_rcb;
SIMPLEQ_ENTRY(edb_req_S) edb_req_link;

};

The context maintains two lists of requests: a pool of free request list entries (edb reql pool) for reuse,
and a list of change requests (edb reql wr) that are committed to disk when edb wr status(edb ctx P
edb ctx) is called.

A request itself contains a type (TA or RCPT), and identifier (which is used as key) and a RCB that
stores the appropriate context in encoding form as defined by the RCB format. The type can actually be
more than just transaction or recipient, it can also denote that the entry matching the identifier should
be removed from the DB.

The data structures for transactions (mail sender) and recipients are shared with the active queue, see
Section 4.10.3.

See Section 3.13.6 for the DEFEDB API, here’s the current implementation:

Two functions are available to open and close a DEFEDB:

• sm ret T edb open(edb ctx P *edb, unsigned int size): open a DEFEDB, size is an esti-
mate for the size (currently unused).

• sm ret T edb close(edb ctx P edb): close a DEFEDB.

The functions which take a parameter edb req hd P edb req hd will use that argument as the head of
the request list unless it is NULL, in which case the write request list edb reql wr of the context will be
used.

• sm ret T edb rcpt app(edb ctx P edb ctx, aq rcpt P aq rcpt, edb req hd P edb req hd, int
status): append a recipient context to the request list, i.e., encode the recipient context into an
RCB and add an entry to the request list.

• sm ret T edb ta app(edb ctx P edb ctx, aq ta P aq ta, edb req hd P edb req hd, int status):
append a transaction context to the request list, i.e., encode the transaction context into an RCB
and add an entry to the request list.

• sm ret T edb wr status(edb ctx P edb ctx, edb req hd P edb req hd): write request list to
disk. This is done as one DB transaction; only if the transaction succeeded the request list is
cleared.

Sendmail X, May 4, 2005, 11:44 277

To retrieve an entry from the DEFEDB one function is provided:

• sm ret T edb rd req(edb ctx P edb ctx, edb req P edb req): edb req must be filled with the
type and the appropriate identifier (recipient or transaction), which is used to lookup the matching
entry in the DB. If it is found, the RCB in the request is filled in.

To decode the RCB retrieved via edb rd req() and fill out an active queue context of the correct type
the following two functions are available:

• sm ret T edb rcpt dec(edb req P edb req, aq rcpt P aq rcpt)

• sm ret T edb ta dec(edb req P edb req, aq ta P aq ta).

To read through a DEFEDB these four functions are provided:

• sm ret T edb rd open(edb ctx P edb ctx, edb cursor P *pedb cursor): prepare the DB for
reading (open a cursor).

• sm ret T edb rd next(edb ctx P edb ctx, edb cursor P edb cursor, edb req P edb req): get
the next entry.

• sm ret T edb get type(edb req P edb req): get the type of the entry just read (TA or RCPT).

• sm ret T edb rd close(edb ctx P edb ctx, edb cursor P edb cursor): close the cursor after
reading entries.

To remove a transaction or a recipient from the DB (directly) use:

• sm ret T edb ta rm(edb ctx P edb ctx, sessta id T ta id)

• sm ret T edb rcpt rm(edb ctx P edb ctx, rcpt id T rcpt id).

To add a request to remove a transaction or a recipient from the DB use:

• sm ret T edb ta rm req(edb ctx P edb ctx, sessta id T ta id, edb req hd P edb req hd)

• sm ret T edb rcpt rm req(edb ctx P edb ctx, rcpt id T rcpt id, edb req hd P edb req hd)

and commit that request later on with edb wr status().

Internal functions to manage a request entry or list are:

• sm ret T edb req new(edb ctx P edb ctx, edb req P *pedb req): get a new request structure
(from the pool or allocate a new one if the pool is empty).

• sm ret T edb reql free(edb req hd P edb req hd): free an entire request list.

4.11 Misc

This section describes the implementation of various programs.

278 Sendmail X, May 4, 2005, 11:44

4.11.1 IBDB Cleanup

How to efficiently perform IBDB cleanup?

Try to minimize the amount of data to clean up. This can be done by performing rollovers at an
appropriate moment, i.e., when the number of outstanding transactions and recipients is zero. This is
probably only possible for low-volume sites. If those two values are zero, then all preceeding files can be
removed.

Read an IBDB file and create a new one that has only the open transactions/recipients in there? Leave
“holes” in the sequence, e.g., use 0x1-0xf and leave 0 free for “cleaning”, i.e., read 0x1-0xf and then write
all the open transactions into 0. Problem: what to do with repeated passes?

How about different names (extensions) instead?

It might be possible to ignore logfiles that are older than the transactional timeout. Those logfiles can
only contain data about transaction that have been either completed or have timed out. Neither of these
are of interest for the reconstruction of the queue. Does this mean a very simple cleanup process is
possible which simply removes old logfiles? This minimizes the amount of effort during runtime at the
expense of diskspace and startup after an unclean shutdown. For the first sendmail X version this might
be a “good enough” solution.

4.11.2 Show Mail Queue

Section 3.11.1 posed the question: how accurate must the output be? Here is a closer look at the
problem: using Berkeley DB for the implementation of the deferred queue poses some problems because
there is no “read-only” access to the content, at least not in the current implementation: the function to
open a DB environment offers no read-only option. Obviously it is a bad idea to open the environment
read/write just to read the queue: the program should not make any modifications to the DB; sendmail
X is designed such that there is a single writer for it only, all locking is done inside QMGR, nothing
relies on locking within Berkeley DB (this is done to avoid the DB corruption problems that may occur
otherwise, especially if some other program crashes while accessing the DB). However, there is a trick
that gives us read-only access: open the DB directly without opening the environment. In this case we
can make the DB group readable, which should be used to avoid any type of corruption. Even though
this looks like a nice solution to the main problem, it opens up another one: the DB may not contain
up-to-date information. Berkeley DB keeps a log file (if used in transaction mode) and hence the DB
itself might have old (and even inconsistent) data.

An alternative approach is to query QMGR about the content of the deferred queue. This allows us to
keep our single writer (and reader), but it causes other problems, e.g., locking the DB for quite some
time and hence causing performance problems.

Note: a fairly accurate state of the mail queue content can be gathered from CDB and the logfile: the
CDB file names are the SMTP server transaction ids which can be looked up in the logfile to find the
sender and recipients. To find out which recipients have not yet been delivered, the logfile must be
scanned for that data. This can be time consuming but it is less intrusive.

4.12 Testing

As requested in Section 1.1.3.5.1 there are many test programs which can as usual be invoked by make
check.

Sendmail X, May 4, 2005, 11:44 279

Some of them are included in the directories for which they perform tests, e.g., smar and libdns, but
most of them are in the directories checks, check2, and chkmts. There are several “check” directories
because of some length restrictions on AIX (2048 bytes line length for some utilities used by the autoconf
tools).

The test programs range from very simple: testing a few library functions (“unit tests”), e.g., string
related, to those which test (aspects of) the entire MTS.

4.13 Problems encountered in the Implementation

This section describes some of the problems that have been encountered in the implementation of sendmail
X. There are two different kind of problems:

1. finding the right implementation for algorithms that satisfy the requirements of sendmail X;

2. problems in the behavior of sendmail X due to the implementation.

4.13.1 Implementation Problems

Implementing sendmail X as a few modules that are required to run under (almost) all circumstances
turned out to be significantly more complicated than expected.

4.13.1.1 Out of Memory

The most complicated problem is to deal with out-of-memory errors. Note: proper recovery from this is
still an open problem. This is even more so a problem because some OS allow to “overcommit” memory.
As soon as overcommitted memory is actually used and the need can not be satisfied, the OS “randomly”
kills a process to allow progress of the entire system. Even though the result of every memory allocation
call in sendmail X is carefully checked and error handlers are invoked if the call returns NULL, these efforts
may be useless on those OSs.

Dealing with memory shortage is also severely hampered by the non-availability of a (standard) function
to actually determine the current memory usage of a process. The function getrusage(2) returns a
structure that has some fields which can contain information about the memory usage, but some OSs do
not put valid data into those fields, and there is only one field (ru maxrss) that is related to memory
usage7. It might be possible that the memory allocation functions try to keep track of the amount of
used memory themselves, but that requires that the free() function receives an additional argument
which denotes the size of the memory segment, otherwise the memory allocation module needs to keep
track of that information itself which is a waste of memory and programming effort. Moreover, due to
internal fragmentation the value might not be correct anyway.

4.13.1.2 Transaction Based Processing

Another problem is transaction based processing, see also Section 4.1.3. It turns out to be non-trivial to
implement this, i.e., a function must either successfully complete all of its operations or none of them,
especially if multiple functions are involved in a sequence, because this means that those functions need
to have some kind of “undo” counterparts which can be invoked in case of errors.

7Others use some “integral” value of memory over time.

280 Sendmail X, May 4, 2005, 11:44

4.13.2 Behavior of the Implementation

4.13.2.1 Number of Open Outgoing Connections

The communication between the various modules of sendmail X turns out to be a problem due to the
latency. The most significant example of this is the interaction of the scheduler and the delivery agents.
The scheduler needs to keep track of the number of open (outgoing) connections to implement the slow
start algorithm and to obey limits set by the user. However, some tests show that the actual number
of open connections to a client and the data that the scheduler has can be significantly different. For
example, in some tests the scheduler reached an upper limit of 256 open connections while the sink
program only listed 2 open connections, while SMTPC itself had some (low) number of busy threads,
e.g., 4 to 16. There are two different problems:

1. The “real” number of open connections versus the number of busy threads in SMTPC.

2. The number of busy threads in SMTPC versus the number of scheduled sessions in QMGR.

One reason for these disagreements is that the messages are very small, hence it takes a very short time
to deliver them (in a lab environment). This can be demonstrated by using larger messages sizes (the
default is less than 1KB): for a message size mix of 32KB and 64KB the number of concurrent connection
reaches the limit in the sink.

About item 2: Here is what seems to happen: as long as the concurrency limit (in qmgr) is not reached,
the scheduler sends task to SMTPC; it stops only when the limit is reached or no more entries are in AQ
(for scheduling). The scheduler has a lock on AQ hence no updates from SMTPC can be done. When
the scheduler releases the lock results from SMTPC can be read. The scheduler is activated as soon as a
result comes back from SMTPC, it then immediately schedules more entries (just one because the limit
is reached) and the ping-pong (one result, one entry scheduled) continues.

Chapter 5

Sendmail X: Performance Tests and
Results

5.1 SMTP Server Daemon

Remark (placed here so it doesn’t get lost): there is a restricted number (< 60000) of possible open
connections to one port. Could that limit the throughput we are trying to achieve or is such a high
number of connections unfeasible?

5.1.1 SMTP Sink

For simple performance comparisons several SMTP sinks have been implemented or tested.

Test programs are:

1. smtp-sink from postfix. This is an entirely event driven program.

2. thrperconn: one thread per connection.

3. thrpool: uses a worker model with concurrency limiting, see Section 3.20.4.1.

4. smtps: state-threads, see Section 3.20.3.1.

Test machines are:

1. v-sun: Sun SPARCserver E450, 4 processors

2. v-bsd: FreeBSD 3.4, 2 PIII processors, 2 GB RAM

3. v-aix: AIX, 4 processors

4. schmidt: Linux 2.4, uses 15 threads per client only, otherwise the machine just “dies”.

Entries in the tables down below denote execution time in seconds unless otherwise noted, hence smaller
values are better.

281

282 Sendmail X, May 4, 2005, 11:44

Tests have been performed with myslam (a multi-threaded SMTP client), using 7 to 8 client machines,
50 threads per client, and 5000 messages per client.

1. v-sun (8 clients):

parameters smtp-sink smtps thrperconn thrpool
1KB/msg (40MB) 45s 70s 92s 43s
4KB/msg (160MB) 49s 56s 259s 78s
32KB/msg (1280MB) 203s 208s >999s 110s
-w 1 141s 109s 156s 230s

Note: v-sun is a four processor machine, hence the multi-threaded programs (thrpool, thrperconn)
can use multiple processors. I didn’t select (via an option) multiple processors for smtps though.

Just as one example, the achieved throughput in MB/s is listed in the next table. As it can be
seen, it is an order of magnitude lower than the sustainable throughput that can be achieved over
a single connection (about 85-90MB/s measured with ttcp; this is a 100Mbit/s ethernet).

parameters smtp-sink smtps thrperconn thrpool
1KB/msg (40MB) 0.9 0.6 0.4 0.9
4KB/msg (160MB) 3.3 2.9 0.6 2.1
32KB/msg (1280MB) 6.5 6.3 - 11.9

2. v-bsd:

parameters smtp-sink smtps thrperconn thrpool
1KB msg size 97 87 380 140
4KB msg size 108 130 1150 156
32KB msg size 208 197 fails 330
-w 1 165 138 484 223

3. v-aix:

parameters smtp-sink smtps thrperconn thrpool
1KB msg size 38 28 - 31
4KB msg size 34 33 - 31
32KB msg size 125 125 - 125
-w 1 125 125 - 155

125 for 250/3

4. schmidt:

parameters smtp-sink smtps thrperconn thrpool
1KB msg size 45 44 165 74
4KB msg size 54 45 418 75
32KB msg size 217 167 fails 256
-w 1 370 360 - 337

5.1.1.1 SMTP Sink with CDB

2004-03-02

statethreads/examples/smtps3

Sendmail X, May 4, 2005, 11:44 283

5.1.1.1.1 wiz See Section 5.2.1.1, machine 1

wiz$ time ./smtpc2 -fa@b.c -Rx@y.z -t 100 -s 1000 -r localhost

sink program FS times (s)
smtps3 - 5
smtpss UFS 17, 18
smtps3 -C UFS 16, 17, 19

5.1.1.1.2 perf-lab source: s-6.perf-lab

sink: v-bsd.perf-lab

with -C

s-6.perf-lab$ time ./smtpc2 -t 100 -s 1000 -r v-bsd.perf-lab
19.17s real 1.08s user 0.64s system

without -C

s-6.perf-lab$ time ./smtpc2 -t 100 -s 1000 -r v-bsd.perf-lab
3.04s real 0.81s user 0.59s system

source: s-6.perf-lab

sink: mon.perf-lab (FreeBSD 4.9)

with -C

12.05s real 1.04s user 0.67s system

without -C

3.03s real 0.92s user 0.54s system

2004-03-04 source: s-6.perf-lab; sink: v-sun.perf-lab

with -C: 20s - 24s (UFS) Note: It takes 20s(!) to remove all CDB files:

time rm ?/S* 0m20.11s

with -C: 1s (TMPFS); 16s (UFS, /), rm: 14s; logging turned on: 16s, rm: 0.8s.

without -C: 1s

2004-03-08 source: s-6.perf-lab; sink: v-bsd;

./smtpc -t 100 -s 1000

sink program time (s)
smtpss 30
smtps3 -C 30
smtps3 3

284 Sendmail X, May 4, 2005, 11:44

2004-03-08 source: s-6.perf-lab; sink: v-sun;

./smtpc -t 100 -s 1000

sink program FS times (s)
smtps3 - 1
smtpss UFS 25, 30
smtps3 -C UFS 23
smtpss swap 2, 3
smtps3 -C swap 1, 2

Note: the variance for smtpss on UFS is fairly large. The lower numbers are achieved by running smtps3
-C first and then smtpss, the larger numbers are measured when the CDB files have just been removed.
However, this effect was not reproduceable. Note: removing those files takes about as long as a test run.

5.1.2 SMTP Relaying Using a Sendmail X Prototype

Test setup with a sendmail X prototype of 2002-09-04: v-aix.perf-lab running QMGR, SMTPS, and
SMTPC. Relaying from localhost to v-bsd.perf-lab. Source program running on v-aix:

time ./smtp-source -s 50 -m 100 -c localhost:8000

Using the full version: 2.45s; turning fsync() off: 1.44s.

This clearly shows the need for a better CDB implementation, at least on AIX.

Same test with reversed roles (smX on v-bsd, sink on v-aix): using the full version: 7.44s; turning fsync()
off: 6.20s. For comparison: using sendmail 8.12: 14.71s.

The SCSI disks on v-bsd seem to be fairly slow. Moreover, there seems to be something wrong with the
OS version (it’s very old: FreeBSD 3.4).

On FreeBSD 4.6 (machine 14, see Section 5.2.1.1) (source, sink, sm-9 of 2002-10-01 on the same machine):

time ./smtp-source -s 100 -m 200 -c localhost:8000

softupdates: 4.35s; without softupdates: 5.66s

time ./smtp-source -s 50 -m 100 -c localhost:8000

softupdates: 2.01s/1.93s, -U: 1.79s; without softupdates: 2.60s/2.46s, -U: 2.17s

(-U turns off fsync()).

Using sendmail 8.12.6:

time ./smtp-source -s 50 -m 100 localhost:1234

softupdates: 5.01s. This looks quite good for sendmail 8, but the result for:

time ./smtp-source -c -s 100 -m 200 localhost:1234

is: 143.12s, which certainly is not anywhere near good. This is related to the high load generated by this:
up to 200 concurrent sendmail processes just kill the machine. sendmail X has only up to 4 processes
running.

Sendmail X, May 4, 2005, 11:44 285

5.1.2.1 Various Linux FS

Test date: 2003-05-25, version: smX.0.0.6, machine: PC, AMD Duron 700MHz, 512MB RAM, SuSE 8.1

Test program:

time ./smtp-source -s 50 -m 500 -fa@b.c -tx@y.z localhost:1234

FS Times msg/s (best)
JFS 4.02s, 4.23s 124
ReiserFS 4.8s 104
XFS 6.7s, 7.2s, 7.48s, 7.64s 74
EXT3 14.39s, 13.44s 34

2004-03-17 checks/t-readwrite on destiny (Linux, IDE, ext2):

parameters writes time
-s -f 1000 -p 1 - 9
-s -f 100 -p 10 - 6

The FS is mounted async (default!).

2004-03-17 checks/t-readwrite on ia64-2 (Linux, SCSI, reiserfs):

parameters writes time
-s -f 1000 -p 1 - 5.2
-s -f 100 -p 10 - 2.6

2004-03-23 source: basil.ps-lab MTA: cilantro.ps-lab (Linux 2.4.18-64GB-SMP) sink: v-sun.perf-lab

FS: ReiserFS version 3.6.25

smtpc -t 100 -s 1000

program source time sink time
smtps3 -C -
smX.0.0.12 6 5
sm8.12.11 74 74
sm8.12.11 See 1 50
postfix 2.0.18

gatling -m 100 -c 5000 -z 1 -Z 1

program writes source time source msgs/s sink time
smtps3 2 2295 -
smtps3 -C 5 962 -
smX.0.0.12 22 225 22
sm8.12.11 358 14 358
sm8.12.11 See 1 246 20 -
postfix 2.0.18

Notes:

1. Default for Linux is to have REQUIRES DIR FSYNC set, in this test it has been turned off. Some
people claim it is safe to do that with recent Linux FSs. For some reasons (timeouts?) the tests
with smtpc fail in this configuration, i.e., less than 1000 messages are sent.

286 Sendmail X, May 4, 2005, 11:44

2. According to tests by Thom sendmail 8.12 was able to relay 40 msgs/s on the same machine.

2004-03-25:

Filesystems:

1. ext3 (rw,sync,data=journal)

2. ext3 (rw,data=journal) [this means async?]

3. reiserfs (rw,noatime,data=journal,notail)

4. jfs (rw)

5. ext2 (rw,sync)

smtpc -t 100 -s 1000

program FS source time sink time
smX.0.0.12 1 63 61

1 63 63
2 19 18
3 5 4
3 5 5
5 81 80

sm8.12.11 3 45 several read errors
5 91 92

smtps3 -C

2004-03-25: gatling -m 100 -c 5000 -z 1 -Z 1 (1KB message size)

program FS source time sink time msgs/s
smX.0.0.12 1

2 90 90 55
3 24 24 208
4 100 99 100

sm8.12.11 3 216 errors 23

gatling -m 100 -c 5000 -z 4 -Z 4 (4KB message size)

program FS source time sink time msgs/s
smX.0.0.12 1

2 92 92 54
3 141 140 35
4 168 168 29

sm8.12.11 3 226 errors 22

gatling -m 100 -c 5000 -z 16 -Z 16 (16KB message size)

program FS source time sink time msgs/s
smX.0.0.12 1

2
3 169 29
4

sm8.12.11 3 226 errors 22

Sendmail X, May 4, 2005, 11:44 287

Notes:

1. ReiserFS seems to have some optimizations for small files, hence the results for 1KB are really good,
but for 4KB they are in the normal range.

2. Testing with sm8 usually caused several read errors on the sink side and several errors displayed by
gatling.

5.1.2.2 Various FreeBSD Results

2003-11-19 sm-9.0.0.9 running on v-bsd.perf-lab (2 processors, FreeBSD 3.4)

Source on bsd.dev-lab

time ./smtp-source -d -s 100 -m 500

directly to sink: 2.16 - 2.74s (231msgs/s)

using MFS: 14.37 - 14.43s (34msgs/s) (sm8.12.10: 32s)

using FS with softupdates: 22.78 - 23.83s (21msgs/s) (sm8.12.10: 49s)

using FS without softupdates: 35.27 - 35.56s (14msgs/s)

2004-03-02 source: s-6.perf-lab; relay: mon; sink: v-bsd

time ./smtpc2 -O 10 -fa@s-6.perf-lab -Rnobody@v-bsd.perf-lab -t 100 -s 1000 -r mon.perf-lab:1234

38.26s real 1.01s user 0.88s system

2004-03-04 source: s-6.perf-lab; relay: v-bsd; sink: v-sun

options: -t 100 -s 1000

MTA source time(s) sink time
postfix 2.0.18 53 94
smX.0.0.12 69 68
without smtpc 56 -
sm8.12.11 67 67
-odq 79, 82
-odq / 100 qd 101
-odq / 10 qd 100

Note: this is FreeBSD 3.4 without softupdates and directory hashes.

getrusage(2) data:

sm8.12.11 -odq

ru_utime= 15.0158488
ru_stime= 71.0104605
ru_maxrss= 1524
ru_ixrss= 5030592
ru_idrss= 4098456
ru_isrss= 1412096
ru_minflt= 127503
ru_majflt= 0

288 Sendmail X, May 4, 2005, 11:44

ru_nswap= 0
ru_inblock= 0
ru_oublock= 11851
ru_msgsnd= 13000
ru_msgrcv= 10000
ru_nsignals= 0
ru_nvcsw= 617469
ru_nivcsw= 18793

sm8.12.11

ru_utime= 15.0236311
ru_stime= 62.0117941
ru_maxrss= 1520
ru_ixrss= 4573224
ru_idrss= 3676784
ru_isrss= 1283712
ru_minflt= 174619
ru_majflt= 0
ru_nswap= 0
ru_inblock= 0
ru_oublock= 4001
ru_msgsnd= 12000
ru_msgrcv= 10000
ru_nsignals= 1000
ru_nvcsw= 128074
ru_nivcsw= 14771

This looks like a problem in queue only mode: there’s way too much data written: almost 3 times the
amount of background delivery mode. Why does sm8 send 1000 more message in queue only mode?

2004-03-05 source, relay, sink: wiz (FreeBSD 4.8)

options: -t 100 -s 1000

source: 34s, sink: 32s

turn off smtpc: source: 31s, 34s

2004-03-26 source: v-6.perf-lab running smtpc -t 100 -s 5000; relay: v-bsd.perf-lab; sink: v-sun.perf-
lab

sink runs smtps2 -R n with varying values for n

n source time requests served
0 108 5000

8000000 115 5060
58000000 140 5450
88000000 151 5620

put defedb on a RAM disk:

Sendmail X, May 4, 2005, 11:44 289

n source time requests served
0 108 5000

8000000
58000000 111 5453
88000000 114 5693

Obviously the additional disk I/O traffic created by having to use DEFEDB is slowing down the system.

5.1.2.2.1 FreeBSD 4.9, Softupdates, and fsync() 2004-06-23 Upgraded v-bsd.perf-lab to FreeBSD
4.9 (2 processors), using softupdates.

source on v-sun, sink on s-6:

time ./smtpc2 -O 10 -t 100 -s 1000 -r v-bsd.perf-lab:1234

43s

turn off fsync(): (smtps -U, must be compiled with -DTESTING)

32s

5.1.2.2.2 Disk I/O On FreeBSD A modified iostat(8) program is used to show the number of
bytes written and read, and the number of read, write, and other disk I/O operations.

The following tests were performed: sink (smtps3) on v-bsd.perf-lab, source (smtpc) on s-6.perf-lab
sending 1000 mails. All numbers for write operations are rounded; if there are numbers in parentheses
then those denote the value of ru oublock (getrusage(2)) for smtps/qmgr or sm8. If two times are
given (separated by /) then the second time denotes the output (elapsed time) for the sink.

program softupdates? writes reads time
smtps3 -C yes 2200 - 14
smtps3 -C no 2900 - 30
smX.0.0.12, no sched (see 1) yes 5200 - 34
smX.0.0.12, no sched yes -
smX.0.0.12, no sched no -
smX.0.0.12 (see 2) yes 3500 (2000/1300) 4 33

yes 3370 (2020/1270) 4 30/29
-O i=1000000 yes 2660 (1850/660) 0 25/24
smX.0.0.12 no 6300 (3000/3200) 0 52
smX.0.0.12 (see 4) yes 3500 (2200/1200) 4 25
sm8.12.11 -odq SS=m yes 1800 - 41
sm8.12.11 -odq SS=m no 12200 - 72
sm8.12.11 SS=m (see 3) yes 236 (164) 0 61

yes 370 (218) 0 60
sm8.12.11 no 8100 (4100) 1 63
sm8.12.11 SS=t yes 7400 0 70
postfix 2.0.18 yes 2900 16 21/26

Notes:

1. Question: why does the smX.0.0.12 use so many write operations? 5200 is way too much. Answer:

290 Sendmail X, May 4, 2005, 11:44

qmgr committed IBDB more than 1000 times1, increasing the maximum time to acknowledge an
SMTPS transaction from 100 µs to 10000 µs reduces the number of commits to 165.

2. Question: why does qmgr still (after increasing the time between commits) perform so many write
operations?

3. Question: why does sm8 use so few writes? Can softupdates eliminate or cluster most writes? Why
doesn’t this work for smX? Solution: SuperSafe was set to m, not to true.

4. If IBDB and CDB are on different partitions, the performance increases significantly (about 25 per
cent faster).

2004-03-23 source: basil.ps-lab MTA: wasabi.ps-lab (FreeBSD 4.9, machine 16 in Section 5.2.1.1) sink:
v-sun.perf-lab

smtpc -t 100 -s 1000

program writes reads source time sink time
smtps3 -C 2400 - 11 -
smX.0.0.12 2600 5 15 13
sm8.12.11 6000 1 35
postfix 2.0.18 2800 15 14 20

Note: the sink time for postfix is shorter than the time for smX because smX emptied the queue during
the run while postfix has more than 700 entries in the mail queue after the source finished sending all
mails. This can be seen by looking at the sink time which is noticeable larger for postfix compared to
sendmail X.

Using gatling:

Max random envelope rcpts: 1
Connections: 100
Max msgs/conn: Unlimited
Messages: Fixed size 1 Kbytes
Desired Message Rate: Unlimited
Total messages: 5000

Total test elapsed time: 73.571 seconds (1:13.570)
Overall message rate: 67.962 msg/sec
Peak rate: 100.000 msg/sec

gatling -m 100 -c 5000 -z 1 -Z 1

program writes source time source msgs/s sink time
smtps3 0 5 980 -
smtps3 -C 11750 53 93
smX.0.0.12 73 67 71
smX.0.0.12 11157 (8000/2700) 70 71 69
sm8.12.11 136 36
postfix 2.0.18 60 83 78
postfix 2.0.18 12635 58 85 75

1How can it be more than the number of transactions?

Sendmail X, May 4, 2005, 11:44 291

2004-03-16 results for wiz: source: time ./smtpc -s 1000 -t 100 -r localhost:1234; sink: smtps3,
file system: UFS, softupdates

parameters oublock writes source time sink time
-C -i 1920 ? 17 16
-C -p 1 1860 ? 17 17
-C -p 1 1940 2700 16 15
-C -p 1 1970 2770 16 15
-C -p 2 ? 15 ?
-C -p 2 877+966 2600 15 ?
-C -p 4 455+476+432+472 2640 15 ?

New option: -f for flat, i.e., instead of using 16 subdirectories for CDB files, a single directory is used.
Even though this does not cause a noticeable difference in run time, the number of I/O operations is
reduced.

parameters oublock writes source time
-C -p 2 915+920 2600 14
-C -p 2 -f 600+610 2200 14

2004-03-16 source: s-6.perf-lab, time ./smtpc -s 1000 -t 100 -r localhost:1234; sink: -v-bsd.perf-
lab, smtps3, file system: UFS, softupdates

parameters oublock writes source time sink time
-C -i 1430 2165 12 11

1550 2300 14 13
-C -p 1 1500 2500 14 12
-C -p 2 1100+620 2500 13 -

800+770 2320 13 -
-C -p 4 530+350+540+470 2600 13 -

Note: some of the write operations might be from softupdates due to the previous rm command (removing
the CDB files).

2004-03-17 checks/t-readwrite on v-bsd (FreeBSD 4.9, SCSI):

parameters softupdates oublock writes time
-s -f 1000 -p 1 yes 4000 4000 22
-s -f 100 -p 10 yes 2575 2579 14
-s -f 1000 -p 1 no 4050 4050 28
-s -f 100 -p 10 no 4050 4050 27

-p specifies the number of processes to start, -f specifies the number of files to write per process. The
test cases above write 1000 files with either 1 or 10 processes. As it can be seen, it is significantly more
efficient to use 10 processes if softupdates are turned on.

2004-03-17 checks/t-readwrite on wiz (FreeBSD 4.8, IDE):

parameters softupdates oublock writes time
-s -f 1000 -p 1 yes 3000 3800 13
-s -f 100 -p 10 yes 2860 3600 13

In this case no difference can be seen, which is most likely a result of using an IDE drive with write-caching
turned on (default).

292 Sendmail X, May 4, 2005, 11:44

5.1.2.3 Various SunOS 5 Results

2003-11-21 sm-9.0.0.9 running on v-sun.perf-lab

Source on bsd.dev-lab

time ./smtp-source -d -s 100 -m 5000 -c

using FS: 301.90 - 305.02s (16msgs/s)

using swap: 77.98 - 78.55s (64msgs/s)

Those tests ran only 32 SMTPS threads (the machine has 4 CPUs, hence the specified limit 128 was
divided by 4). Using 128 SMTPS threads (by forcing only one process which was used anyway because
SMTPS is run with the interactive option which does not start backgroup processes):

time ./smtp-source -d -s 100 -m 50000 -c

using swap: 727.73s (68msgs/s)

2004-03-09 sm-9.0.0.12 running on v-sun.perf-lab

time ./smtpc -O 20 -fa@s-6.perf-lab.sendmail.com -Rnobody@v-bsd.perf-lab.sendmail.com -t 100 -s 1000
-r v-sun.perf-lab.sendmail.com:1234

MTA options FS source time(s) sink time(s)
full MTS SWAPFS 16 14
without sched SWAPFS 10 -
smtpss SWAPFS 3 -
full MTS UFS 64, 65, 64 75, 70, 69
8.12.11 SWAPFS 16 19
8.12.11 UFS 141 138

Note: smX using UFS runs into connection limitations: QMGR believes there are 100 open connections
even though the sink shows at most 18. This seems to be a communication latency between SMTPC and
QMGR (and needs to be investigated further).

2004-03-17 checks/t-readwrite on v-sun (SunOS 5.8, SCSI):

parameters writes time
-s -f 1000 -p 1 - 39
-s -f 100 -p 10 - 37

The filesystem on SunOS 5.8 does not cause any difference whether 1 or 10 processes are used.

5.1.2.4 Various OpenBSD Results

2004-03-05 source, relay, and sink on zardoc (OpenBSD 3.2)

test with logging via smioout

zardoc$ time ./smtpc2 -O 10 -s 1000 -t 100 -r localhost:1234
24.17s real 0.94s user 2.57s system

smtps3 stats:

elapsed 26

Sendmail X, May 4, 2005, 11:44 293

Thread limits (min/max) 8/256
Waiting threads 8
Max busy threads 3
Requests served 1000

Note that there have been only 3 active threads. That means the client is not busy at all. Another test
shows elapsed=23s, max busy threads=21, so the result isn’t deterministic (the machine is running as
normal SMTP server etc during tests).

test with logging via smioerr: smtpc2: 24.53s; no difference.

5.1.2.5 Various AIX Results

2004-03-17 checks/t-readwrite on aix-3 (AIX 4.3, SCSI, jfs):

parameters writes time
-s -f 1000 -p 1 - 30
-s -f 100 -p 10 - 29

No (noticeable) difference.

5.2 Implementation of Queues and Caches

5.2.1 Filesystem Performance

Here are some results of a simple test program which creates and deletes a number of files and optionally
renames them twice while doing so.

Notice: unless mentioned otherwise, all measurements are at most accurate to one second resolution.
Repeated test will most likely show (slightly) different results. These tests are only listed to give an idea
of the magnitude of available performance.

5.2.1.1 Test Systems

The involved systems are:

1. PC, Pentium III, 500MHz, 256MB RAM, FreeBSD 3.2,

wdc0: unit 0 (wd0): <FUJITSU MPD3064AT>
wd0: 6187MB (12672450 sectors), 13410 cyls, 15 heads, 63 S/T, 512 B/S

2. PC, AMD K6-2, 450MHz, 220MB RAM, OpenBSD 2.8,

(a) wd0 at pciide0 channel 0 drive 0: <IBM-DJNA-351010>
wd0: can use 32-bit, PIO mode 4, DMA mode 2, Ultra-DMA mode 4
wd0: 16-sector PIO, LBA, 9671MB, 16383 cyl, 16 head, 63 sec, 19807200 sectors

(b) wd1 at pciide0 channel 0 drive 1: <Maxtor 98196H8>,
wd1: can use 32-bit, PIO mode 4, DMA mode 2, Ultra-DMA mode 4,
wd1: 16-sector PIO, LBA, 78167MB, 16383 cyl, 16 head, 63 sec, 160086528 sectors

294 Sendmail X, May 4, 2005, 11:44

3. PC, Pentium III, 500MHz, 256MB RAM, FreeBSD 4.4-STABLE,

ad0: 6187MB <FUJITSU MPC3064AT> [13410/15/63] at ata0-master UDMA33

4. PC, AMD-K7, 500MHz, FreeBSD 4.4-STABLE, 332MB RAM,

(a) ahc0: <Adaptec 2940 Ultra2 SCSI adapter (OEM)>
da0: <IBM DNES-309170W SA30> Fixed Direct Access SCSI-3 device
da0: 40.000MB/s transfers (20.000MHz, offset 31, 16bit), Tagged Queueing Enabled
da0: 8748MB (17916240 512 byte sectors: 255H 63S/T 1115C)

i. SCSI with softupdates
ii. SCSI without softupdates

(b) ad0: 8063MB <FUJITSU MPD3084AT> [16383/16/63] at ata0-master UDMA66

softupdates

5. PC, Linux 2.2.12,

hda: IBM-DJNA-370910, 8693MB w/1966kB Cache, CHS=1108/255/63

ext 2 FS

6. PC, Linux 2.4.7,

hda: 39102336 sectors (20020 MB) w/2048KiB Cache, CHS=2434/255/63, UDMA(66)
reiserfs: using 3.5.x disk format
ReiserFS version 3.6.25

7. Dec Digitial Alpha, OSF/1, SCSI disk?

8. Sun SPARC, SunOS 5.6, SCSI disk?

9. Sun SPARC, SunOS 5.7, SCSI disk?

(a) mount options: no logging, atime

(b) mount options: logging, atime

(c) mount options: logging, noatime

10. Sun SPARC E450, 4 CPUs,

(a) Baydel RAID

(b) SCSI disk

11. AIX 4.3.3, using JFS (default).

12. PC, AMD K7, 1000MHz, 512MB RAM, SuSE 7.3, kernel 2.4.10

WD1200BB
hdg: 234441648 sectors (120034 MB) w/2048KiB Cache, CHS=232581/16/63, UDMA(100)

(a) /home jfs

(b) /opt reiserfs

(c) /work ext3

Sendmail X, May 4, 2005, 11:44 295

13. HP-UX 11.00

14. PC, Pentium II, 360MHz, 512MB RAM, FreeBSD 4.6,

ad0: 8693MB <IBM-DJNA-370910> [17662/16/63] at ata0-master UDMA33
acd0: CDROM <CD-ROM 40X> at ata1-master PIO4

15. Intel IA64, 4 CPUs, 1GB RAM

scsi0 : ioc0: LSI53C1030, FwRev=01000000h, Ports=1, MaxQ=255, IRQ=52
Vendor: MAXTOR Model: ATLASU320_18_SCA Rev: B120
Type: Direct-Access ANSI SCSI revision: 03

Attached scsi disk sda at scsi0, channel 0, id 0, lun 0
SCSI device sda: 35916548 512-byte hdwr sectors (18389 MB)
reiserfs: found format "3.6" with standard journal
reiserfs: using ordered data mode
Using r5 hash to sort names

16. Intel Pentium III, 650 MHz, 256MB RAM

da0 at ahc0 bus 0 target 0 lun 0
da0: <SEAGATE ST39175LW 0001> Fixed Direct Access SCSI-2 device
da0: 80.000MB/s transfers (40.000MHz, offset 15, 16bit), Tagged Queueing Enabled
da0: 8683MB (17783240 512 byte sectors: 255H 63S/T 1106C)

17. PC, Pentium III, 450MHz, 256MB RAM, FreeBSD 4.8, softupdates

ad0: 6187MB <FUJITSU MPD3064AT> [13410/15/63] at ata0-master UDMA33

18. PC, FreeBSD 4.10, softupdates

da3 at ahc0 bus 0 target 4 lun 0
da3: <IBM DNES-309170Y SA30> Fixed Direct Access SCSI-3 device
da3: 40.000MB/s transfers (20.000MHz, offset 31, 16bit), Tagged Queueing Enabled
da3: 8748MB (17916240 512 byte sectors: 255H 63S/T 1115C)

19. PC, VIA C3, 667MHz, 256MB RAM, OpenBSD 3.2,

(a) wd0 at pciide0 channel 0 drive 0: <IBM-DJNA-371350>
wd0: 16-sector PIO, LBA, 12949MB, 16383 cyl, 16 head, 63 sec, 26520480 sectors

(b) wd1 at pciide0 channel 0 drive 1: <WDC WD1200BB-53CAA0>
wd1: 16-sector PIO, LBA, 114473MB, 16383 cyl, 16 head, 63 sec, 234441648 sectors

(c) wd2 at pciide1 channel 0 drive 0: <Maxtor 6Y160P0>
wd2: 16-sector PIO, LBA48, 156334MB, 16383 cyl, 16 head, 63 sec, 320173056 sectors
wd2(pciide1:0:0): using PIO mode 4, Ultra-DMA mode 6

296 Sendmail X, May 4, 2005, 11:44

5.2.1.2 Meta Data Operations

In this section, some simple test programs are used that create some files, perform (sequential) read/write
operations on them and remove them afterwards.

Entries in the following table are elapsed time in seconds (except for the first column which obviously
refers to the machine description above). The program that has been used to produce these results is
fsperf1.c.

machine 5000 100 -c 5000 100 -c -r 5000 100
1 50 49 48
1 42 48 51
2a 3 7 10

about 2200 tps about 1500 tps
2b 11 21
3 10 34 34

about 500 tps
4(a)i 126 125
4(a)ii 208 454
4b 43 48
7 7 13 16
5 9 8 9
8 133 201 603
9a 52 665
10a 9 9 12
11 89 139 233

Comments:

• 2a is probably so fast due to a disk cache, i.e., the data is probably not really written to disk (even
though fsync() is used). The same might hold for 5. In case of 10a the RAID system has a (battery
backed) RAM disk cache, which gives similar results without the risk of losing data in case of a
power loss.

• 8 is unacceptably slow...

(2004-07-14) With and without fsync(2) (-S)

common parameters machine -c -c -r -S -c -S -c -r
(5000 100) 17 42 42 2 3

10b 165 496 165 495
18 83 83 5 8
19a 8 7 1 3
19b 8 9 1 3
19c 7 9 1 2

(-s 32 5000 100) 17 109 109 8 9
10b 250 537 207 498
18 114 113 14 16
19b 87 81 3 5
19c 26 26 4 5

Comments:

Sendmail X, May 4, 2005, 11:44 297

• Sun’s FS is unbelievable slow. Moreover, it doesn’t make a difference whether fsync(2) is used or
not. That means the FS does not have any optimization like softupdates or journalling FSs have.

• FreeBSD softupdate can optimize renaming in this test.

• IDE is faster than SCSI for small sizes because of the cache; it most likely “cheats” (write cache is
not disabled, hence the date may not really be on disk even if fsync(2) is used).

Next version: allow for hashing (00 - 99, up to two levels). Use enough files to defeat the (2MB) cache
of IDE disks.

machine -h 1 -c 1000 1000 -h 1 -c -r 1000 1000
1 18 18
2a 24 24
2b 7 9
3 14 14
4(a)i 23 23
4(a)ii 33 77
4b 25 49
5 3 2
7 3 4
8 58 163
9a 51 139
11 28 48

Comments:

• The fact that there is no difference for the two tests for 2a might be again be attributed to the disk
cache. The same effect can be observed for 1, 3, and 5.

• The result for 4(a)i (softupdates) indicates that softupdates eliminates the two consecutive re-
name(2)s since no fsync(2) is issued inbetween. The results without softupdates 4(a)ii reflect this.

• 8, 9a, and 11 show the normal filesystem (UFS) behaviour.

• 7 is extremely fast.

5.2.1.2.1 Meta Data Operations: Existing Files Next version fsperf1.c: allow for hashing (00 -
99, up to two levels). Use enough files to defeat the (2MB) cache of IDE disks. The parameters for the
following table are 1000 operations and 1000 files, hence each file is used once. Additional parameters
are listed in the heading. c: create, h 1: one level hashing, r: rename file twice, p: populate directories
before test, then just reuse the files.

machine -h 1 -c -h 1 -c -r -p -h 1 -c -p -h 1 -c -r
1 32 31 18 17
2a 18 18 9 10
2b 10 10 8 10
5 2 1 2 1
6 2 2 4 4
7 2 4 2 3
8 58 165 78 178
9a 27 127 33 131
9c 13 51 37 55
11 28 48 28 48

298 Sendmail X, May 4, 2005, 11:44

Comments:

• 5 must be cheating (ext2, async).

• Why are populated directories slower on 8?

• Using logging (and noatime) on 9 makes rename() more than two times faster.

5.2.1.3 Writing a Logfile

Another test program (fsseq1.c) writes lines to a file and uses fsync(2) after a specified number (-C
parameter).

20000 entries (10000 entries each for received/delivered, total 490000 bytes).

machine - -C 100 -C 50 -C 10 -C 5 -C 2 -f
1 1 4 6 17 32 78 150
2a 0 2 2 5 5 9 18
2b 1 0 1 3 4 10 20
3 1 2 3 9 16 37 68
5 1 1 2 6 12 27 56
7 0 4 8 39 79 198 410
8 1 7 13 60 120 299 598
9a 1 8 13 15 62 90 140
11 0 6 12 53 106 262 518

This clearly demonstrates the need for group commits. However, the program requires a lot of CPU
since each line is generated by snprintf(). Hence the full I/O speed may not be reached. To confirm this,
another program (fsseq2.c) is used that just writes a buffer with a fixed content to a file.

The following table lists the results for group commits (C) together with various buffer sizes (256, 1024,
4096, 8192, and 16384). As usual the entries are execution time in seconds. The program writes 2000
records in total, e.g., for size 16384 that is 31MB data.

Sendmail X, May 4, 2005, 11:44 299

machine C 256 1024 4096 8192 16384
5 1 4 5 10 20 34

2 2 4 6 12 22
5 1 2 5 7 15

10 1 1 3 6 12
50 1 0 3 5 10

100 0 1 3 5 10
7 1 1 5 20 40 44

2 1 5 11 23 29
5 1 5 9 12 13

10 1 2 3 6 7
50 0 1 1 2 3

100 0 1 1 1 3
8 1 3 10 45 95 109

2 2 11 23 52 59
5 3 11 19 24 32

10 2 5 6 15 21
50 1 2 3 8 13

100 0 1 3 6 13
9a 1 3 12 34 35 58

2 3 12 18 53 53
5 3 6 21 23 24

10 3 5 6 13 14
50 1 2 2 5 7

100 1 1 2 3 6
11 1 21 35 77 83 92

2 13 26 38 45 50
5 8 13 17 20 24

10 5 6 10 11 15
50 1 2 2 4 7

100 1 1 2 3 6

Comments:

• 7 is able to sustain about 10MB/s write rate, 9a reaches about 5MB/s, just like 11.

• 5 achieves about 3MB/s.

Yet another program (fsseq3.c) uses write() instead of fwrite(). This time the tests write 40000KB each,
which makes it simpler to determine the throughput.

Note: as usual, these times are not very accurate (1s resolution), and hence the rate is inaccurate too.
Machines:

300 Sendmail X, May 4, 2005, 11:44

1

C s records time KB/s
1 512 80000 1365 29
1 1024 40000 734 54
1 2048 20000 451 88
1 4096 10000 352 113
1 8192 5000 250 160
2 512 80000 736 54
2 1024 40000 453 88
2 2048 20000 354 112
2 4096 10000 382 104
2 8192 5000 225 177
5 512 80000 638 62
5 1024 40000 585 68
5 2048 20000 312 128
5 4096 10000 187 213
5 8192 5000 101 396

10 512 80000 561 71
10 1024 40000 296 135
10 2048 20000 161 248
10 4096 10000 88 454
10 8192 5000 60 666
50 512 80000 128 312
50 1024 40000 70 571
50 2048 20000 41 975
50 4096 10000 34 1176
50 8192 5000 29 1379

100 512 80000 73 547
100 1024 40000 43 930
100 2048 20000 33 1212
100 4096 10000 28 1428
100 8192 5000 27 1481

2b

C s records time KB/s
1 512 80000 165 242
1 1024 40000 90 444
1 2048 20000 54 740
1 4096 10000 28 1428
1 8192 5000 16 2500
2 512 80000 94 425
2 1024 40000 52 769
2 2048 20000 30 1333
2 4096 10000 17 2352
2 8192 5000 11 3636
5 512 80000 54 740
5 1024 40000 33 1212
5 2048 20000 19 2105
5 4096 10000 11 3636
5 8192 5000 8 5000

10 512 80000 31 1290
10 1024 40000 18 2222
10 2048 20000 11 3636
10 4096 10000 8 5000
10 8192 5000 6 6666
50 512 80000 11 3636
50 1024 40000 8 5000
50 2048 20000 6 6666
50 4096 10000 5 8000
50 8192 5000 4 10000

100 512 80000 10 4000
100 1024 40000 8 5000
100 2048 20000 5 8000
100 4096 10000 4 10000
100 8192 5000 5 8000

Sendmail X, May 4, 2005, 11:44 301

5

C s records time KB/s
1 512 80000 13440 2
1 1024 40000 6790 5
1 2048 20000 3451 11
1 4096 10000 1779 22
1 8192 5000 1007 39
2 512 80000 6790 5
2 1024 40000 3439 11
2 2048 20000 1763 22
2 4096 10000 909 44
2 8192 5000 471 84
5 512 80000 2763 14
5 1024 40000 1414 28
5 2048 20000 739 54
5 4096 10000 383 104
5 8192 5000 208 192

10 512 80000 1414 28
10 1024 40000 731 54
10 2048 20000 384 104
10 4096 10000 208 192
10 8192 5000 120 333
50 512 80000 312 128
50 1024 40000 174 229
50 2048 20000 101 396
50 4096 10000 64 625
50 8192 5000 46 869

100 512 80000 171 233
100 1024 40000 100 400
100 2048 20000 64 625
100 4096 10000 46 869
100 8192 5000 37 1081

6

C s records time KB/s
1 512 80000 130 307
1 1024 40000 93 430
1 2048 20000 78 512
1 4096 10000 23 1739
1 8192 5000 12 3333
2 512 80000 62 645
2 1024 40000 46 869
2 2048 20000 24 1666
2 4096 10000 13 3076
2 8192 5000 15 2666
5 512 80000 66 606
5 1024 40000 31 1290
5 2048 20000 18 2222
5 4096 10000 15 2666
5 8192 5000 10 4000

10 512 80000 28 1428
10 1024 40000 19 2105
10 2048 20000 13 3076
10 4096 10000 10 4000
10 8192 5000 10 4000
50 512 80000 14 2857
50 1024 40000 10 4000
50 2048 20000 10 4000
50 4096 10000 9 4444
50 8192 5000 7 5714

100 512 80000 11 3636
100 1024 40000 10 4000
100 2048 20000 8 5000
100 4096 10000 8 5000
100 8192 5000 8 5000

302 Sendmail X, May 4, 2005, 11:44

7

C s records time KB/s
1 512 80000 3347 11
1 1024 40000 1689 23
1 2048 20000 845 47
1 4096 10000 418 95
1 8192 5000 192 208
2 512 80000 1243 32
2 1024 40000 796 50
2 2048 20000 431 92
2 4096 10000 222 180
2 8192 5000 122 327
5 512 80000 655 61
5 1024 40000 268 149
5 2048 20000 161 248
5 4096 10000 108 370
5 8192 5000 58 689

10 512 80000 355 112
10 1024 40000 185 216
10 2048 20000 85 470
10 4096 10000 42 952
10 8192 5000 38 1052
50 512 80000 88 454
50 1024 40000 49 816
50 2048 20000 31 1290
50 4096 10000 18 2222
50 8192 5000 10 4000

100 512 80000 45 888
100 1024 40000 33 1212
100 2048 20000 19 2105
100 4096 10000 14 2857
100 8192 5000 14 2857

8

C s records time KB/s
1 512 80000 6302 6
1 1024 40000 3220 12
1 2048 20000 1695 23
1 4096 10000 949 42
1 8192 5000 552 72
2 512 80000 3183 12
2 1024 40000 1708 23
2 2048 20000 950 42
2 4096 10000 484 82
2 8192 5000 299 133
5 512 80000 1402 28
5 1024 40000 805 49
5 2048 20000 440 90
5 4096 10000 252 158
5 8192 5000 137 291

10 512 80000 783 51
10 1024 40000 395 101
10 2048 20000 211 189
10 4096 10000 122 327
10 8192 5000 87 459
50 512 80000 181 220
50 1024 40000 107 373
50 2048 20000 68 588
50 4096 10000 49 816
50 8192 5000 42 952

100 512 80000 111 360
100 1024 40000 70 571
100 2048 20000 50 800
100 4096 10000 40 1000
100 8192 5000 36 1111

Sendmail X, May 4, 2005, 11:44 303

9a

C s records time KB/s
1 512 80000 2638 15
1 1024 40000 1419 28
1 2048 20000 753 53
1 4096 10000 442 90
1 8192 5000 221 180
2 512 80000 1379 29
2 1024 40000 774 51
2 2048 20000 409 97
2 4096 10000 220 181
2 8192 5000 124 322
5 512 80000 644 62
5 1024 40000 382 104
5 2048 20000 198 202
5 4096 10000 105 380
5 8192 5000 58 689

10 512 80000 355 112
10 1024 40000 196 204
10 2048 20000 104 384
10 4096 10000 59 677
10 8192 5000 32 1250
50 512 80000 90 444
50 1024 40000 51 784
50 2048 20000 28 1428
50 4096 10000 19 2105
50 8192 5000 15 2666

100 512 80000 54 740
100 1024 40000 28 1428
100 2048 20000 20 2000
100 4096 10000 15 2666
100 8192 5000 14 2857

9b

C s records time KB/s
1 512 80000 2642 15
1 1024 40000 1312 30
1 2048 20000 723 55
1 4096 10000 376 106
1 8192 5000 185 216
2 512 80000 1363 29
2 1024 40000 699 57
2 2048 20000 359 111
2 4096 10000 185 216
2 8192 5000 104 384
5 512 80000 563 71
5 1024 40000 302 132
5 2048 20000 162 246
5 4096 10000 88 454
5 8192 5000 46 869

10 512 80000 299 133
10 1024 40000 161 248
10 2048 20000 87 459
10 4096 10000 46 869
10 8192 5000 24 1666
50 512 80000 81 493
50 1024 40000 44 909
50 2048 20000 35 1142
50 4096 10000 19 2105
50 8192 5000 13 3076

100 512 80000 51 784
100 1024 40000 35 1142
100 2048 20000 26 1538
100 4096 10000 15 2666
100 8192 5000 13 3076

304 Sendmail X, May 4, 2005, 11:44

9c

C s records time KB/s
1 512 80000 2576 15
1 1024 40000 1326 30
1 2048 20000 707 56
1 4096 10000 377 106
1 8192 5000 192 208
2 512 80000 1324 30
2 1024 40000 685 58
2 2048 20000 349 114
2 4096 10000 187 213
2 8192 5000 107 373
5 512 80000 578 69
5 1024 40000 313 127
5 2048 20000 163 245
5 4096 10000 89 449
5 8192 5000 46 869

10 512 80000 306 130
10 1024 40000 162 246
10 2048 20000 86 465
10 4096 10000 46 869
10 8192 5000 25 1600
50 512 80000 82 487
50 1024 40000 44 909
50 2048 20000 33 1212
50 4096 10000 19 2105
50 8192 5000 13 3076

100 512 80000 52 769
100 1024 40000 36 1111
100 2048 20000 25 1600
100 4096 10000 16 2500
100 8192 5000 13 3076

12a

C s records time KB/s
1 512 80000 65 615
1 1024 40000 61 655
1 2048 20000 59 677
1 4096 10000 5 8000
1 8192 5000 4 10000
2 512 80000 13 3076
2 1024 40000 8 5000
2 2048 20000 4 10000
2 4096 10000 4 10000
2 8192 5000 3 13333
5 512 80000 44 909
5 1024 40000 21 1904
5 2048 20000 13 3076
5 4096 10000 3 13333
5 8192 5000 3 13333

10 512 80000 12 3333
10 1024 40000 3 13333
10 2048 20000 3 13333
10 4096 10000 3 13333
10 8192 5000 5 8000
50 512 80000 11 3636
50 1024 40000 3 13333
50 2048 20000 5 8000
50 4096 10000 5 8000
50 8192 5000 4 10000

100 512 80000 5 8000
100 1024 40000 5 8000
100 2048 20000 5 8000
100 4096 10000 4 10000
100 8192 5000 3 13333

Sendmail X, May 4, 2005, 11:44 305

12b

C s records time KB/s
1 512 80000 124 322
1 1024 40000 87 459
1 2048 20000 72 555
1 4096 10000 20 2000
1 8192 5000 10 4000
2 512 80000 47 851
2 1024 40000 32 1250
2 2048 20000 16 2500
2 4096 10000 8 5000
2 8192 5000 5 8000
5 512 80000 56 714
5 1024 40000 27 1481
5 2048 20000 20 2000
5 4096 10000 5 8000
5 8192 5000 5 8000

10 512 80000 23 1739
10 1024 40000 17 2352
10 2048 20000 6 6666
10 4096 10000 3 13333
10 8192 5000 6 6666
50 512 80000 7 5714
50 1024 40000 4 10000
50 2048 20000 6 6666
50 4096 10000 6 6666
50 8192 5000 4 10000

100 512 80000 7 5714
100 1024 40000 6 6666
100 2048 20000 5 8000
100 4096 10000 4 10000
100 8192 5000 3 13333

12c

C s records time KB/s
1 512 80000 205 195
1 1024 40000 144 277
1 2048 20000 122 327
1 4096 10000 14 2857
1 8192 5000 7 5714
2 512 80000 34 1176
2 1024 40000 22 1818
2 2048 20000 13 3076
2 4096 10000 7 5714
2 8192 5000 5 8000
5 512 80000 96 416
5 1024 40000 48 833
5 2048 20000 20 2000
5 4096 10000 4 10000
5 8192 5000 4 10000

10 512 80000 36 1111
10 1024 40000 7 5714
10 2048 20000 5 8000
10 4096 10000 4 10000
10 8192 5000 3 13333
50 512 80000 12 3333
50 1024 40000 4 10000
50 2048 20000 4 10000
50 4096 10000 3 13333
50 8192 5000 3 13333

100 512 80000 7 5714
100 1024 40000 6 6666
100 2048 20000 3 13333
100 4096 10000 3 13333
100 8192 5000 3 13333

5.2.1.3.1 Raw Throughput Very simple measurement of transfer rate:

time dd ibs=8192 if=/dev/zero obs=8192 count=5120 of=incq

machine s MB/s
1 11.6 3.6
2a 4.8 8.4
2b 1.9 20.9
5 10.83 3.9
6 0.65 61
7 1.0 40.0
8 14.8 2.8
9 6.3 6.6
11 6.98 6.0
12a 0.247 161
12b 0.401 99
12c 0.357 112

306 Sendmail X, May 4, 2005, 11:44

Comments:

• The dd throughput is about twice as high as the maximum achieved via fsseq3 for 1, 2b, and 8.

• 5 seems to have a very bad fsync() implementation, and even in the best case the throughput is off
by a factor of 3 from the dd value.

• For 7 the difference is about a factor of 13, which either means the dd time is flawed (pretty likely,
since it is very short), or the fsync() calls are significant on that system.

• The dd throughput for 40MB is absurdely high on the Linux 2.4.x systems. That might be due to
the default async mount option. See below for a test with a larger value

dd ibs=8192 if=/dev/zero obs=8192 count=124000 of=incq

machine s MB/s
12a 24.762 39
12b 22.608 42

The data in this table is more likely, even though 40MB/s is still very fast.

5.2.1.3.2 Writing a Logfile; 2nd Version For comparison with the Berkeley DB performance
data, more tests have been run with fsseq4 with different parameters. Number of records is 100000 unless
otherwise noted, t/s is transactions (records written) per second. Notice: fsseq3 writes twice as much
records as fsseq4 (one add and one delete entry each), and it calls fsync() twice as often (after the add
and after the delete entry).

1

C s time KB/s t/s
100000 20 1 1953 100000
10000 20 2 976 50000
1000 20 7 279 14285
100 20 20 97 5000

100000 100 3 3255 33333
10000 100 4 2441 25000
1000 100 8 1220 12500
100 100 57 171 1754

100000 512 15 3333 6666
10000 512 16 3125 6250
1000 512 17 2941 5882
100 512 67 746 1492

100000 1024 29 3448 3448
10000 1024 30 3333 3333
1000 1024 33 3030 3030
100 1024 77 1298 1298

100000 2048 60 3333 1666
10000 2048 60 3333 1666
1000 2048 64 3125 1562
100 2048 101 1980 990

2b

C s time KB/s t/s
100000 20 1 1953 100000
10000 20 1 1953 100000
1000 20 2 976 50000
100 20 2 976 50000

100000 100 2 4882 50000
10000 100 1 9765 100000
1000 100 2 4882 50000
100 100 7 1395 14285

100000 512 3 16666 33333
10000 512 3 16666 33333
1000 512 4 12500 25000
100 512 6 8333 16666

100000 1024 6 16666 16666
10000 1024 5 20000 20000
1000 1024 6 16666 16666
100 1024 8 12500 12500

100000 2048 12 16666 8333
10000 2048 12 16666 8333
1000 2048 15 13333 6666
100 2048 15 13333 6666

Sendmail X, May 4, 2005, 11:44 307

5

C s time KB/s t/s
100000 20 1 1953 100000
10000 20 1 1953 100000
1000 20 2 976 50000
100 20 9 217 11111

100000 100 3 3255 33333
10000 100 4 2441 25000
1000 100 5 1953 20000
100 100 15 651 6666

100000 512 16 3125 6250
10000 512 18 2777 5555
1000 512 22 2272 4545
100 512 75 666 1333

100000 1024 34 2941 2941
10000 1024 35 2857 2857
1000 1024 46 2173 2173
100 1024 139 719 719

100000 2048 67 2985 1492
10000 2048 79 2531 1265
1000 2048 95 2105 1052
100 2048 246 813 406

7

C s time KB/s t/s
100000 20 1 1953 100000
10000 20 1 1953 100000
1000 20 4 488 25000
100 20 31 63 3225

100000 100 2 4882 50000
10000 100 2 4882 50000
1000 100 6 1627 16666
100 100 33 295 3030

100000 512 8 6250 12500
10000 512 11 4545 9090
1000 512 15 3333 6666
100 512 50 1000 2000

100000 1024 11 9090 9090
10000 1024 10 10000 10000
1000 1024 14 7142 7142
100 1024 42 2380 2380

100000 2048 25 8000 4000
10000 2048 26 7692 3846
1000 2048 21 9523 4761
100 2048 42 4761 2380

8

C s time KB/s t/s
100000 20 3 651 33333
10000 20 3 651 33333
1000 20 3 651 33333
100 20 5 390 20000

100000 100 3 3255 33333
10000 100 4 2441 25000
1000 100 4 2441 25000
100 100 9 1085 11111

100000 512 5 10000 20000
10000 512 5 10000 20000
1000 512 7 7142 14285
100 512 20 2500 5000

100000 1024 8 12500 12500
10000 1024 8 12500 12500
1000 1024 9 11111 11111
100 1024 26 3846 3846

100000 2048 15 13333 6666
10000 2048 16 12500 6250
1000 2048 21 9523 4761
100 2048 36 5555 2777

11

C s time KB/s t/s
100000 20 1 1953 100000
10000 20 1 1953 100000
1000 20 4 488 25000
100 20 29 67 3448

100000 100 1 9765 100000
10000 100 2 4882 50000
1000 100 5 1953 20000
100 100 36 271 2777

100000 512 4 12500 25000
10000 512 5 10000 20000
1000 512 9 5555 11111
100 512 44 1136 2272

100000 1024 8 12500 12500
10000 1024 9 11111 11111
1000 1024 13 7692 7692
100 1024 54 1851 1851

100000 2048 15 13333 6666
10000 2048 17 11764 5882
1000 2048 22 9090 4545
100 2048 67 2985 1492

308 Sendmail X, May 4, 2005, 11:44

10a

C s time KB/s t/s
100000 20 2 976 50000
10000 20 1 1953 100000
1000 20 2 976 50000
100 20 3 651 33333

100000 100 2 4882 50000
10000 100 2 4882 50000
1000 100 2 4882 50000
100 100 6 1627 16666

100000 512 3 16666 33333
10000 512 3 16666 33333
1000 512 4 12500 25000
100 512 21 2380 4761

100000 1024 3 33333 33333
10000 1024 4 25000 25000
1000 1024 7 14285 14285
100 1024 41 2439 2439

100000 2048 4 50000 25000
10000 2048 5 40000 20000
1000 2048 12 16666 8333
100 2048 80 2500 1250

10b

C s time KB/s t/s
100000 20 1 1953 100000
10000 20 1 1953 100000
1000 20 4 488 25000
100 20 23 84 4347

100000 100 2 4882 50000
10000 100 2 4882 50000
1000 100 5 1953 20000
100 100 32 305 3125

100000 512 5 10000 20000
10000 512 5 10000 20000
1000 512 9 5555 11111
100 512 42 1190 2380

100000 1024 10 10000 10000
10000 1024 11 9090 9090
1000 1024 14 7142 7142
100 1024 59 1694 1694

100000 2048 21 9523 4761
10000 2048 21 9523 4761
1000 2048 25 8000 4000
100 2048 78 2564 1282

Comments:

• Using record sizes that are not a divider of the block size of the underlying filesystem reduces
throughput since fsync() can’t write whole blocks in that case.

• 10a behaves very bad for C=100. The reason for this is unknown. The times are especially bad
compared to the Berkeley DB tests run on the same configuration (see Section 5.2.3).

5.2.2 Harddisk Performance

Some performance data gathered from the WWW.

SR Office DriveMark 2002 in IO/Sec taken from [Ra01]:

Sendmail X, May 4, 2005, 11:44 309

Manufacturer Model I/O operations/second
Seagate Cheetah X15-36LP (36.7 GB Ultra160/m SCSI) 485
Maxtor Atlas 10k III (73 GB Ultra160/m SCSI) 455
Fujitsu MAM3367 (36 GB Ultra160/m SCSI) 446
IBM Ultrastar 36Z15 (36.7 GB Ultra160/m SCSI) 402
Western Digital Caviar WD1000BB-SE (100 GB ATA-100) 397
Seagate Cheetah 36ES (36 GB Ultra160/m SCSI) 373
Fujitsu MAN3735 (73 GB Ultra160/m SCSI) 369
Seagate Cheetah 73LP (73.4 GB Ultra160/m SCSI) 364
Western Digital Caviar WD1200BB (120 GB ATA-100) 337
Seagate Cheetah 36XL (36.7 GB Ultra 160/m SCSI) 328
IBM Deskstar 60GXP (60.0 GB ATA-100) 303
Maxtor DiamondMax Plus D740X (80 GB ATA-133) 301
Seagate Barracuda ATA IV (80 GB ATA-100) 296
Quantum Fireball Plus AS (60.0 GB ATA-100) 295
Quantum Atlas V (36.7 GB Ultra160/m SCSI) 269
Seagate Barracuda 180 (180 GB Ultra160/m SCSI) 249
Maxtor DiamondMax 536DX (100 GB ATA-100) 248
Seagate Barracuda 36ES (36 GB Ultra160/m SCSI) 222
Seagate U6 (80 GB ATA-100) 210
Samsung SpinPoint P20 (40.0 GB ATA-100) 192

ZD Business Disk WinMark 99 in MB/Sec

Manufacturer Model MB/second
Seagate Cheetah X15-36LP (36.7 GB Ultra160/m SCSI) 13.1
Maxtor Atlas 10k III (73 GB Ultra160/m SCSI) 12.0
IBM Ultrastar 36Z15 (36.7 GB Ultra160/m SCSI) 11.3
Fujitsu MAM3367 (36 GB Ultra160/m SCSI) 11.1
Seagate Cheetah 36ES (36 GB Ultra160/m SCSI) 10.5
Seagate Cheetah 73LP (73.4 GB Ultra160/m SCSI) 10.2
Seagate Cheetah 36XL (36.7 GB Ultra 160/m SCSI) 9.9
Western Digital Caviar WD1000BB-SE (100 GB ATA-100) 9.8
Fujitsu MAN3735 (73 GB Ultra160/m SCSI) 9.1
Western Digital Caviar WD1200BB (120 GB ATA-100) 8.9
IBM Deskstar 60GXP (60.0 GB ATA-100) 8.8
Seagate Barracuda ATA IV (80 GB ATA-100) 8.5
Maxtor DiamondMax Plus D740X (80 GB ATA-133) 8.0
Quantum Atlas V (36.7 GB Ultra160/m SCSI) 7.9
Quantum Fireball Plus AS (60.0 GB ATA-100) 7.7
Seagate Barracuda 36ES (36 GB Ultra160/m SCSI) 7.4
Seagate Barracuda 180 (180 GB Ultra160/m SCSI) 7.1
Maxtor DiamondMax 536DX (100 GB ATA-100) 6.9
Samsung SpinPoint P20 (40.0 GB ATA-100) 6.5
Seagate U6 (80 GB ATA-100) 6.3

The file and web server benchmarks (also available at [Ra01]) are not useful since they include 80 and
100 per cent read accesses, which is not really typical of MTA servers.

310 Sendmail X, May 4, 2005, 11:44

5.2.3 Performance of Berkeley DB

Some preliminary, very simple performance tests with Berkeley DB 4.0.14 have been made. Two bench-
mark programs have been used: bench 001 and bench 002 which use Btree and Queue as access methods.
They are based on examples c/bench 001.c that comes with Berkeley DB. Notice: the access method
Queue requires fixed size records and the access methods is record numbers (simply increasing). This
method may be used for the backup of the incoming EDB. Notice: the tests have not (yet) been run mul-
tiple times, at least not systematically. Testing showed that the runtimes may vary noticable. However,
the data can be used to show some trends.

Possible parameters are:

-n N number of records to write
-T N use transactions, synchronize after N transactions
-l N length of data part
-C N do a checkpoint every N actions and possibly remove logfile

Unless otherwise noted, the following tests have been performed on system 1, see Section 5.2.1. Number
of records is 100000 unless otherwise noted, t/s is transactions (records written) per second.

Vary synchronization (-T):

Prg -T -l real user sys KB/s t/s
1 100000 20 14.73 5.99 1.00 132 6788
1 10000 20 14.64 5.85 1.29 133 6830
1 1000 20 18.14 6.02 1.10 107 5512
1 100 20 70.57 6.03 1.76 27 1417
2 100000 20 11.58 2.91 0.74 168 8635
2 10000 20 10.14 2.86 0.85 192 9861
2 1000 20 11.20 2.85 0.95 174 8928
2 100 20 68.71 2.73 1.61 28 1455

Vary data length, first program only:

Prg -T -l real user sys KB/s t/s
1 100000 20 14.39 5.93 1.16 135 6949
1 10000 20 16.77 5.91 1.16 116 5963
1 1000 20 16.58 5.91 1.13 117 6031
1 100 20 68.10 5.95 1.85 28 1468
1 100000 100 23.30 5.57 1.90 419 4291
1 10000 100 30.56 5.56 1.90 319 3272
1 1000 100 33.39 5.51 1.99 292 2994
1 100 100 82.58 5.47 2.62 118 1210
1 100000 512 96.03 7.69 4.78 520 1041
1 10000 512 94.12 7.39 5.03 531 1062
1 1000 512 97.67 7.20 5.15 511 1023
1 100 512 164.13 7.51 5.67 304 609
1 100000 1024 304.88 10.88 10.62 327 327
1 10000 1024 270.00 10.69 10.66 370 370
1 1000 1024 275.27 10.91 11.06 363 363
1 100 1024 346.10 11.01 12.09 288 288
1 100000 2048 788.88 22.18 27.59 253 126

The test has been aborted at this point. Maybe run it again later on.

Sendmail X, May 4, 2005, 11:44 311

Vary data length, second program only:

Prg -T -l real user sys KB/s t/s
2 100000 20 9.46 2.81 0.80 206 10570
2 10000 20 11.53 2.88 0.81 169 8673
2 1000 20 12.47 2.83 0.96 156 8019
2 100 20 67.91 2.80 1.59 28 1472
2 100000 100 13.57 2.92 1.20 719 7369
2 10000 100 18.62 3.07 1.17 524 5370
2 1000 100 19.04 2.92 1.20 512 5252
2 100 100 72.73 2.80 2.16 134 1374
2 100000 512 46.10 3.90 2.61 1084 2169
2 10000 512 53.55 3.84 2.79 933 1867
2 1000 512 66.71 3.65 3.05 749 1499
2 100 512 105.25 3.36 3.76 475 950
2 100000 1024 103.72 4.92 4.68 964 964
2 10000 1024 105.53 4.87 4.82 947 947
2 1000 1024 105.60 4.73 4.85 946 946
2 100 1024 145.14 4.73 5.84 688 688
2 100000 2048 194.70 7.44 8.09 1027 513
2 10000 2048 197.09 7.22 8.15 1014 507
2 1000 2048 200.09 7.10 8.70 999 499
2 100 2048 234.85 6.86 9.53 851 425

Put the directory for logfiles on a different disk (/extra/home/ca/tmp/db), using Btree.

Prg -T -l real user sys KB/s t/s
1 100000 20 14.90 6.05 0.96 131 6711
1 10000 20 14.46 5.95 1.12 135 6915
1 1000 20 17.70 5.83 1.08 110 5649
1 100 20 63.91 5.92 1.74 30 1564
1 100000 100 27.00 5.53 1.90 361 3703
1 10000 100 33.39 5.63 1.92 292 2994
1 1000 100 29.16 5.63 1.75 334 3429
1 100 100 72.18 5.44 2.42 135 1385
1 100000 512 96.94 7.49 5.09 515 1031
1 10000 512 107.99 7.34 5.17 463 926
1 1000 512 97.05 7.21 5.54 515 1030
1 100 512 145.15 7.85 5.36 344 688
1 100000 1024 268.88 10.67 11.54 371 371
1 10000 1024 279.65 11.02 11.05 357 357
1 1000 1024 304.07 10.58 11.69 328 328
1 100 1024 319.74 10.88 12.10 312 312
1 100000 2048 738.38 23.07 27.13 270 135
1 10000 2048 651.86 22.70 26.92 306 153
1 1000 2048 693.13 21.79 28.63 288 144
1 100 2048 724.68 22.51 29.04 275 137

Put the directory for logfiles on a different disk (/extra/home/ca/tmp/db), using Queue.

312 Sendmail X, May 4, 2005, 11:44

Prg -T -l real user sys KB/s t/s
2 100000 20 10.92 2.90 0.65 178 9157
2 10000 20 9.94 2.87 0.77 196 10060
2 1000 20 31.66 2.85 0.88 61 3158
2 100 20 60.74 2.93 1.36 32 1646
2 100000 100 13.62 3.09 0.95 717 7342
2 10000 100 19.30 3.02 1.17 505 5181
2 1000 100 15.55 3.16 1.08 628 6430
2 100 100 71.88 2.97 1.72 135 1391
2 100000 512 52.08 3.93 2.50 960 1920
2 10000 512 52.42 3.68 3.03 953 1907
2 1000 512 56.58 3.91 2.90 883 1767
2 100 512 95.38 3.74 3.64 524 1048
2 100000 1024 107.20 4.69 4.87 932 932
2 10000 1024 100.15 4.88 4.57 998 998
2 1000 1024 100.95 4.78 5.06 990 990
2 100 1024 139.38 4.71 5.61 717 717
2 100000 2048 187.78 7.68 8.41 1065 532
2 10000 2048 189.76 7.09 8.62 1053 526
2 1000 2048 201.95 7.37 8.65 990 495
2 100 2048 217.66 7.21 9.53 918 459

Machine 2b: Vary data length, first program:

Prg -T -l real user sys KB/s t/s
1 100000 20 21.56 9.04 1.88 90 4638
1 10000 20 13.02 9.58 1.92 150 7680
1 1000 20 12.64 9.40 1.81 154 7911
1 100 20 16.35 9.68 1.73 119 6116
1 100000 100 32.79 9.16 4.60 297 3049
1 10000 100 25.05 9.54 4.11 389 3992
1 1000 100 23.69 9.80 4.39 412 4221
1 100 100 28.51 10.25 3.89 342 3507
1 100000 512 47.67 13.82 13.65 1048 2097
1 10000 512 48.04 13.22 13.64 1040 2081
1 1000 512 46.35 13.16 14.54 1078 2157
1 100 512 52.10 13.78 11.93 959 1919
1 100000 1024 109.32 21.59 25.00 914 914
1 10000 1024 107.94 19.97 26.49 926 926
1 1000 1024 108.74 20.13 26.06 919 919
1 100 1024 113.14 20.01 26.45 883 883
1 100000 2048 240.16 44.55 55.72 832 416
1 10000 2048 262.05 43.58 54.94 763 381
1 1000 2048 245.93 41.17 57.54 813 406
1 100 2048 254.97 41.39 59.63 784 392

Vary data length, second program:

Sendmail X, May 4, 2005, 11:44 313

Prg -T -l real user sys KB/s t/s
2 100000 20 9.85 5.92 1.30 198 10152
2 10000 20 7.82 5.90 1.28 249 12787
2 1000 20 7.21 5.13 1.34 270 13869
2 100 20 10.36 5.79 1.23 188 9652
2 100000 100 10.22 5.84 2.73 955 9784
2 10000 100 10.54 6.11 2.72 926 9487
2 1000 100 10.68 6.12 2.40 914 9363
2 100 100 13.57 6.06 2.37 719 7369
2 100000 512 23.73 7.32 8.89 2107 4214
2 10000 512 25.36 7.42 8.44 1971 3943
2 1000 512 26.12 7.19 8.56 1914 3828
2 100 512 33.79 7.24 8.78 1479 2959
2 100000 1024 47.93 9.05 12.29 2086 2086
2 10000 1024 52.26 9.63 14.91 1913 1913
2 1000 1024 52.07 9.37 14.50 1920 1920
2 100 1024 58.91 9.49 14.52 1697 1697
2 100000 2048 74.59 15.42 20.55 2681 1340
2 10000 2048 72.47 14.99 21.50 2759 1379
2 1000 2048 78.38 14.54 21.93 2551 1275
2 100 2048 76.63 14.01 22.12 2609 1304

Machine 7: Vary data length, second program only; the times for a second test run are added on the
right, these clearly show how wildly the results can vary.

Prg -T -l real user sys KB/s t/s
2 100000 20 5.20 2.00 0.30 375 19230
2 10000 20 6.20 2.00 0.30 315 16129
2 1000 20 7.10 2.00 0.30 275 14084
2 100 20 25.80 2.00 0.50 75 3875
2 100000 100 6.30 2.10 0.60 1550 15873
2 10000 100 6.50 2.10 0.60 1502 15384
2 1000 100 10.60 2.20 0.60 921 9433
2 100 100 36.50 2.10 0.80 267 2739
2 100000 512 33.40 2.70 2.80 1497 2994
2 10000 512 29.80 2.70 2.90 1677 3355
2 1000 512 29.30 2.60 2.50 1706 3412
2 100 512 65.90 2.60 2.90 758 1517
2 100000 1024 50.50 3.30 4.90 1980 1980
2 10000 1024 60.80 3.40 5.40 1644 1644
2 1000 1024 51.70 3.30 4.60 1934 1934
2 100 1024 89.70 3.20 5.60 1114 1114
2 100000 2048 90.20 4.40 8.90 2217 1108
2 10000 2048 92.80 4.30 9.10 2155 1077
2 1000 2048 93.50 4.60 7.80 2139 1069
2 100 2048 134.00 4.40 7.50 1492 746

real user sys
5.0 2.0 0.3
4.8 1.9 0.3
7.8 2.0 0.3

28.5 2.0 0.5
6.0 2.0 0.6
7.6 2.1 0.6

11.5 2.0 0.6
31.4 2.1 0.8
18.5 2.6 2.0
24.6 2.5 2.3
32.9 2.5 2.8
61.0 2.5 2.8
58.4 3.2 5.5
47.2 3.2 4.6
45.1 3.2 4.2
82.0 3.2 4.9
86.9 4.3 9.1
67.1 4.3 7.3
66.0 4.2 7.0

107.7 4.2 6.5

Vary data length, first program only:

314 Sendmail X, May 4, 2005, 11:44

Prg -T -l real user sys KB/s t/s
1 100000 20 6.90 3.10 0.40 283 14492
1 10000 20 7.20 3.30 0.50 271 13888
1 1000 20 9.90 3.30 0.50 197 10101
1 100 20 28.90 3.20 0.60 67 3460
1 100000 100 11.30 3.40 1.00 864 8849
1 10000 100 12.20 3.30 1.00 800 8196
1 1000 100 14.00 3.30 1.10 697 7142
1 100 100 35.80 3.30 1.30 272 2793
1 100000 512 37.10 4.50 4.20 1347 2695
1 10000 512 50.00 4.60 4.50 1000 2000
1 1000 512 62.50 4.50 4.60 800 1600
1 100 512 68.60 4.50 4.60 728 1457
1 100000 1024 86.20 6.20 8.70 1160 1160
1 10000 1024 117.10 6.00 8.40 853 853
1 1000 1024 78.90 6.10 7.80 1267 1267
1 100 1024 109.60 6.10 7.40 912 912
1 100000 2048 225.80 10.90 15.90 885 442
1 10000 2048 259.40 10.80 16.30 771 385
1 1000 2048 382.60 10.90 17.40 522 261
1 100 2048 394.30 10.90 17.20 507 253

Machine 10a:

Prg -T -l real user sys KB/s t/s
1 100000 20 5.00 4.40 0.50 390 20000
1 10000 20 5.00 4.30 0.60 390 20000
1 1000 20 5.50 4.40 0.80 355 18181
1 100 20 9.00 4.50 3.90 217 11111
1 100000 100 6.10 4.70 1.20 1600 16393
1 10000 100 6.20 4.80 1.20 1575 16129
1 1000 100 6.70 4.60 1.80 1457 14925
1 100 100 10.90 5.00 4.30 895 9174
1 100000 512 13.30 6.50 5.10 3759 7518
1 10000 512 12.90 6.90 4.80 3875 7751
1 1000 512 14.00 7.00 5.00 3571 7142
1 100 512 19.00 7.10 8.40 2631 5263
1 100000 1024 19.70 8.80 8.40 5076 5076
1 10000 1024 19.30 9.20 8.20 5181 5181
1 1000 1024 19.90 9.20 8.70 5025 5025
1 100 1024 26.70 9.20 12.30 3745 3745
1 100000 2048 32.90 13.80 11.70 6079 3039
1 10000 2048 31.10 13.80 12.10 6430 3215
1 1000 2048 34.90 14.40 12.30 5730 2865
1 100 2048 41.30 14.10 16.10 4842 2421

Sendmail X, May 4, 2005, 11:44 315

Prg -T -l real user sys KB/s t/s
2 100000 20 4.70 4.20 0.30 415 21276
2 10000 20 4.70 4.00 0.50 415 21276
2 1000 20 5.20 4.20 0.70 375 19230
2 100 20 8.80 4.10 3.90 221 11363
2 100000 100 5.50 4.30 0.80 1775 18181
2 10000 100 5.70 4.30 0.80 1713 17543
2 1000 100 6.20 4.50 1.00 1575 16129
2 100 100 9.70 4.50 4.20 1006 10309
2 100000 512 12.50 5.50 2.30 4000 8000
2 10000 512 13.60 5.40 2.60 3676 7352
2 1000 512 11.70 5.10 3.30 4273 8547
2 100 512 14.50 5.70 6.40 3448 6896
2 100000 1024 17.90 6.80 3.90 5586 5586
2 10000 1024 17.30 6.70 4.60 5780 5780
2 1000 1024 18.40 6.60 4.60 5434 5434
2 100 1024 19.00 7.00 8.10 5263 5263
2 100000 2048 24.80 8.80 6.90 8064 4032
2 10000 2048 21.20 9.00 6.80 9433 4716
2 1000 2048 20.90 9.10 7.20 9569 4784
2 100 2048 24.00 8.90 11.30 8333 4166

General notice: the benchmark programs have been run while the machines were “in use”, so some
unusual results can be explained by the activity of other processes.

Comments:

• Compared with fsseq3 (see Section 5.2.1), Berkeley DB has to write at least two files, the logfile
itself and the database. Hence the throughput should be lower by at least a factor of 2. Additional
disk head movements cause another slowdown.

• For 1 it doesn’t help much to put the directory for logfiles on a different disk, which is a bit
surprising.

• The throughput for Queue is about 30 to 200 per cent higher than for Btree. Since the former has
only fixed record size and (almost) no search overhead, this is expected. However, it is not clear
whether the Queue access method is flexible enough for the deferred EDB. Currently it doesn’t
seems so.

5.3 Miscellaneous about Performance

2004-03-26 Effect of logging using logging to files via sm I/O.

On FreeBSD 4.9, UFS, softupdates, SCSI, smX.0.0.12, relay 5000 messages, 100 threads:

logging time
same disk, smioerr 137-141
same disk, smioout 104
RAM, smioerr 104

This means there is a performance hit of about 35 per cent if smioerr is used instead of smioout. The
former uses line buffering, hence there are more writes involved.

316 Sendmail X, May 4, 2005, 11:44

5.4 Performance of Various Programs

5.4.1 TCP/IP Performance

The program checks/t-net-0.c can be used for very simple performance test of local TCP/IP (AF INET
or AF LOCAL) communication. This function uses the SM I/O layer on top of sockets. Some of the options
which are available are listed below:

-b n set buffer size to n, default 8192
-c n act as client, write n bytes
-s n act as server, read n bytes
-R n read and write n times
-u use a Unix domain socket

The numbers reference the machines listed in Section 5.2.1.1.

1:

-R -c time INET time LOCAL
100000 32 15 10
100000 64 19 12
100000 128 24 17
100000 256 31 25
100000 512 49 43
100000 1024 84 81

7:

-R -c time INET time LOCAL
100000 32 10 7
100000 64 11 7
100000 128 13 9
100000 256 17 14
100000 512 23 20
100000 1024 37 35

8:

-R -c time INET time LOCAL
100000 32 51 41
100000 64 57 46
100000 128 66 60
100000 256 97 86
100000 512 148 138
100000 1024 250 243

9:

-R -c time INET time LOCAL
100000 32 67 52
100000 64 74 59
100000 128 85 71
100000 256 114 97
100000 512 159 148
100000 1024 263 246

Sendmail X, May 4, 2005, 11:44 317

11:

-R -c time INET time LOCAL
100000 32 99 89
100000 64 108 94
100000 128 138 115
100000 256 141 151
100000 512 199 221
100000 1024 346 373

Notice: these times vary wildly since the machine is used by several people.

13:

-R -c time INET time LOCAL
100000 32 46 38
100000 64 59 48
100000 128 78 70
100000 256 120 110
100000 512 203 192
100000 1024 376 358

5.4.2 DB Lookup Performance

Just a preliminary number: On system 1 the example program examples c/bench 001.c achieves about
1 to 1.5 millions lookups per second (this is for a data length of 20 bytes and a cache size of 64MB,
which more or less means direct memory access, no disk I/O). Taking the results from 5.4.1 into account
means that this is factor of 100 faster than performing lookups over a generic TCP/IP connection. This
certainly must be taken into account for the decision how and where to incorporate DB lookups.

Using larger data sizes (256 to 512 bytes) and smaller caches (10000 bytes) cause a significant drop in
performance: a sequential lookup of all data varies from 60000 to 10000 lookups per second (on system
1).

Random access goes down as much as 1000 to 2000 lookups per second.

5.4.3 snprintf Performance

On AIX, sm snprintf() is about 2 times slower than snprintf(). On SunOS 5.8 it’s about 1.3, on
FreeBSD there is no difference (which isn’t surprising since it’s almost the same code). It might make
sense to use the native snprintf() version on some platforms, however, this isn’t possible anymore due
to the extensions in sm snprintf() (which supports more format specifiers, e.g., for constant strings).

318 Sendmail X, May 4, 2005, 11:44

Bibliography

[ABLL92] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism. In ACM Transactions on Computer
Systems,, volume 10(1), pages 53–79. ACM, February 1992.

[ASF] Apache. http://www.apache.org/.

[Ber] Dan Bernstein. Secure interprocess communication. http://cr.yp.to/docs/secureipc.html.

[Ber97] Dan Bernstein. Verp: Variable envelope return paths, 1997.
http://cr.yp.to/proto/verp.txt.

[Ber98] Dan Bernstein. qmail, 1998. http://cr.yp.to/qmail.html.

[Bra89] Requirements for internet hosts – application and support. RFC 1123, Internet Engineering
Task Force, 1989.

[Dre02] Dreppner. http://people.redhat.com/drepper/nptl-design.pdf, 2002.
http://people.redhat.com/drepper/nptl-design.pdf.

[FB96] N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime) part one: Format
of internet message bodies. RFC 2045, Internet Engineering Task Force, 1996.

[Fre96] N. Freed. SMTP service extension for returning enhanced error codes. RFC 2034, Internet
Engineering Task Force, 1996.

[Fre00] N. Freed. SMTP service extension for command pipelining. RFC 2920, Internet Engineering
Task Force, 2000.

[GK98] R. Gellens and J. Klensin. Message submission. RFC 2476, Internet Engineering Task Force,
1998.

[Haz01] Philip Hazel. Exim, 2001. http://www.exim.org/.

[Hof99] P. Hoffman. SMTP service extension for secure SMTP over TLS. RFC 2487, Internet Engi-
neering Task Force, 1999.

[ine] inetd. src/usr.sbin/inetd/inetd.c.

[ISC01] ISC. Bind, 2001. http://www.isc.org/bind.html.

[Keg01] Dan Kegel. The C10K problem, 2001. http://www.kegel.com/c10k.html.

[KFM95] J. Klensin, N. Freed, and K. Moore. SMTP service extension for message size declaration.
RFC 1870, Internet Engineering Task Force, 1995.

319

320 Sendmail X, May 4, 2005, 11:44

[KFR+94] J. Klensin, N. Freed, M. Rose, E. Stefferud, and D. Crocker. SMTP service extension for
8bit-mimetransport. RFC 1652, Internet Engineering Task Force, 1994.

[KFR+95] J. Klensin, N. Freed, M. Rose, E. Stefferud, and D. Crocker. SMTP service extensions. RFC
1869, Internet Engineering Task Force, 1995.

[Kle01] Simple mail transfer protocol. RFC 2821, Internet Engineering Task Force, 2001.

[Krü98] Jan Krüger. check local, 1998. http://www.digitalanswers.org/check local.

[LDA] Openldap. http://www.OpenLDAP.org/.

[Moo96a] K. Moore. An extensible message format for delivery status notifications. RFC 1894, Internet
Engineering Task Force, 1996.

[Moo96b] K. Moore. SMTP service extension for delivery status notifications. RFC 1891, Internet
Engineering Task Force, 1996.

[Mye96] John Myers. Local mail transfer protocol. RFC 2033, Internet Engineering Task Force, 1996.

[Mye99] J. Myers. SMTP service extension for authentication. RFC 2554, Internet Engineering Task
Force, 1999.

[New00] D. Newman. Deliver by SMTP service extension. RFC 2852, Internet Engineering Task Force,
2000.

[NGP02] Next generation posix threading project, 2002. http://oss.software.ibm.com/pthreads/.

[nss] nsswitch.conf. nsswitch.conf(2).

[OBS99] Mike Olson, Keith Bostic, and Margo Seltzer. Berkeley db. In USENIX Annual Technical
Conference. The USENIX Association, June 1999.

[Par86] Craig Partridge. Mail routing and the domain system. RFC 974, Internet Engineering Task
Force, 1986.

[pf] pf. pf.conf(5).

[pro] procmail. http://www.procmail.org/.

[Ra01] Eugene Ra. Storagereview.com’s testbed3, 2001. http://www.storagereview.com/articles/200111/20011109Renaissance 7.html.

[RB01] Jeffrey B. Rothman and John Buckman. Which OS is fastest for High-Performance Network
Applications?, 2001. http://www.sysadminmag.com/newsletters/feature/.

[Res01] Internet message format. RFC 2822, Internet Engineering Task Force, 2001.

[RO92] M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured filesys-
tem. In ACM Transactions on Computer Systems,, volume 10(1), pages 26–52. ACM, February
1992.

[SBMS93] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. The design and implementation of the
4.4bsd log-structured file system. In Proceedings of the 1993 Winter Usenix, San Diego, CA,.
The USENIX Association, January 1993.

[SGI01] SGI. State threads for internet applications, 2001.
http://state-threads.sourceforge.net/.

[She01a] Gene Shekhtman. Re: some questions, 2001. http://oss.sgi.com/projects/state-threads/.

Sendmail X, May 4, 2005, 11:44 321

[She01b] Gene Shekhtman. St and dbms client libraries, 2001.
http://oss.sgi.com/projects/state-threads/.

[Slea] Sleepycat. Berkeley db 4.0.14 change log. http://www.sleepycat.com/update/4.0.14/if.4.0.14.html.

[Sleb] Sleepycat. Berkeley db tutorial and reference guide, version 4.1.24. db-4.1.24.NC/docs/ref/.

[Sol02] Multithreading in the Solaris operating environment. Technical report, Sun Microsystems,
2002.

[SSB+95] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains, and V. Padmanabhan. File
system logging versus clustering: A performance comparison. In Proceedings of the 1995
Winter Usenix,, pages 249–264. The USENIX Association, January 1995.

[Ste92] Richard Stevens. Advanced Programming in the UNIX Environment. Addison-Wesley, 1992.

[Ste98] Richard Stevens. UNIX Network Programming: Networking APIs: Sockets and XTI, volume 1.
Prentice Hall, 2nd edition, 1998.

[SV96a] Douglas C. Schmidt and Steve Vinoski. Object interconnections: Comparing alternative
programming techniques for multi-threaded corba servers (column 6). SIGS C++ Report,
April 1996.

[SV96b] Douglas C. Schmidt and Steve Vinoski. Object interconnections: Comparing alternative
programming techniques for multi-threaded corba servers (column 7). SIGS C++ Report,
July 1996.

[SV96c] Douglas C. Schmidt and Steve Vinoski. Object interconnections: Comparing alternative
programming techniques for multi-threaded servers (column 5). SIGS C++ Report, February
1996.

[Var01] Sam Varshavchik. Courier mta, 2001. http://www.courier-mta.org/.

[Vau96a] G. Vaudreuil. Enhanced mail system status codes. RFC 1893, Internet Engineering Task
Force, 1996.

[Vau96b] G. Vaudreuil. The multipart/report content type for the reporting of mail system adminis-
trative messages. RFC 1892, Internet Engineering Task Force, 1996.

[Ven98] Wietse Venema. postfix, 1998. http://www.postfix.org/.

[Win96] J. De Winter. SMTP service extension for remote message queue starting. RFC 1985, Internet
Engineering Task Force, 1996.

